Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 34(20)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36753756

RESUMEN

We utilize a diffusion-controlled wet chemical etching technique to fabricate microstructures from two-dimensional HgTe/(Hg,Cd)Te-based topological insulators. For this purpose, we employ a KI: I2: HBr: H2O-based etchant. Investigation of the side profile of the etched heterostructure reveals that HgTe quantum wells protrude from the layer stack as a result of the different etch rates of the layers. This constraint poses challenges for the study of the transport properties of edge channels in HgTe quantum wells. In order to achieve a smoother side profile, we develop a novel approach to the etching process involving the incorporation of a sacrificial design element in the etch mask. This limits the flow of charge carriers to the ions in the electrolyte during the etching process. The simplicity of the method coupled with the promising results achieved thereby should make it possible for the new approach introduced here to be applied to other semiconductor heterostructures.

2.
Nat Commun ; 12(1): 3193, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045456

RESUMEN

Soon after the discovery of the quantum spin Hall effect, it has been predicted that a magnetic impurity in the presence of strong Coulomb interactions will destroy the quantum spin Hall effect. However, the fate of the quantum spin Hall effect in the presence of magnetic impurities has not yet been experimentally investigated. Here, we report the successful experimental demonstration of a quantized spin Hall resistance in HgTe quantum wells dilutely alloyed with magnetic Mn atoms. These quantum wells exhibit an inverted band structure that is very similar to that of the undoped material. Micron sized devices of (Hg,Mn)Te quantum well (in the topological phase) show a quantized spin Hall resistance of h/2e2 at low temperatures and zero magnetic field. At finite temperatures, we observe signatures of the Kondo effect due to interaction between the helical edge channels and magnetic impurities. Our work lays the foundation for future investigations of magnetically doped quantum spin Hall materials towards the realization of chiral Majorana fermions.

3.
Phys Rev Lett ; 124(7): 076802, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32142329

RESUMEN

Topological effects in edge states are clearly visible on short lengths only, thus largely impeding their studies. On larger distances, one may be able to dynamically enhance topological signatures by exploiting the high mobility of edge states with respect to bulk carriers. Our work on microwave spectroscopy highlights the response of the edges which host very mobile carriers, while bulk carriers are drastically slowed down in the gap. Though the edges are denser than expected, we establish that charge relaxation occurs on short timescales and suggest that edge states can be addressed selectively on timescales over which bulk carriers are frozen.

4.
Nano Lett ; 18(8): 4831-4836, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29975844

RESUMEN

The topic of two-dimensional topological insulators has blossomed after the first observation of the quantum spin Hall (QSH) effect in HgTe quantum wells. However, studies have been hindered by the relative fragility of the edge states. Their stability has been a subject of both theoretical and experimental investigation in the past decade. Here, we present a new generation of high quality (Cd,Hg)Te/HgTe-structures based on a new chemical etching method. From magnetotransport measurements on macro- and microscopic Hall bars, we extract electron mobilities µ up to about 400 × 103 cm2/(V s), and the mean free path λmfp becomes comparable to the sample dimensions. The Hall bars show quantized spin Hall conductance, which is remarkably stable up to 15 K. The clean and robust edge states allow us to fabricate high quality side-contacted Josephson junctions, which are significant in the context of topological superconductivity. Our results open up new avenues for fundamental research on QSH effect as well as potential applications in spintronics and topological quantum computation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA