Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 6(1): 360-371, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28966762

RESUMEN

Polyfurans have never been established as useful conjugated polymers, as previously they were considered to be inherently unstable and poorly conductive. Here, we show the preparation of stable and conducting polyfuran films by electropolymerization of a series of oligofurans of different chain lengths substituted with alkyl groups. The polyfuran films show good conductivity in the order of 1 S cm-1, good environmental and electrochemical stabilities, very smooth morphologies (roughness 1-5 nm), long effective conjugation lengths, well-defined spectroelectrochemistry and electro-optical switching (in the Vis-NIR region), and have optical band-gaps in the range of 2.2-2.3 eV. A low oxidation potential needed for polymerization of oligofurans (compared to furan) is a key factor in achievement of improved properties of polyfurans reported in this work. DFT calculations and experiments show that polyfurans are much more rigid than polythiophenes, and alkyl substitution does not disturb backbone planarity and conjugation. The obtained properties of polyfuran films are similar or superior to the properties of electrochemically prepared poly(oligothiophene)s under similar conditions.

2.
J Am Chem Soc ; 136(34): 11906-9, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25093450

RESUMEN

1-Phenyl-3-trifluoromethyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl is the first example of a hydrazyl radical that shows a reversible sharp spin transition fully completed within 5(1) K. The nominally first-order transition takes place at ca. 58(2) K and proceeds via subtle changes of intra- and interstack interactions between two similar structural phases. The low-temperature phase (5-60 K) is diamagnetic and has a singlet ground state (2Jexp = -166.8 cm(-1), gsolid = 2.0042, ρ = 0.2%) stemming from a multicenter two-electron interaction. The high-temperature phase (60-300 K) is paramagnetic as a result of noninteracting S = 1/2 spins arising from weakly bound dimers.

3.
Org Biomol Chem ; 12(34): 6661-71, 2014 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-25030451

RESUMEN

An expedient approach to the synthesis of well soluble symmetrical dialkyl-substituted α-oligofurans containing up to 8 π-conjugated furan heterocycles is reported. An ultimate symmetry and high solubility of these α-oligofurans were guaranteed using the 3,3'-diheptyl-2,2'-bifuran core and its symmetrical elongation through Suzuki-Miyaura or Stille cross-couplings. 3,3'-Diheptyl-2,2'-bifuran was prepared from 2,2'-bifuran-3,3'-dicarbaldehyde by the Wittig olefination and subsequent Pd/C-catalyzed transfer hydrogenation. The most appropriate access to 2,2'-bifuran-3,3'-dicarbaldehyde was achieved through a regioselective lithiation of 3-furanaldehyde acetal followed by CuCl2-induced homocoupling and deprotection. Single crystal X-ray analysis of 2,2'-bifuran-3,3'-dicarbaldehyde revealed anti-arrangement of the furan rings in planar molecules and an unexpected tight herringbone-type packing in crystals.

4.
Acc Chem Res ; 47(5): 1465-74, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24785408

RESUMEN

Since the discovery of high conductivity in iodine-doped polyacetylene, many interesting conducting polymers have been developed. Of these, polythiophenes have been most studied as electronic materials, with poly(3,4-ethylenedioxythiophene) (PEDOT) and the water-soluble PEDOT-PSS being the most successful commercially used conducting polymers. The polyselenophene family together with poly(3,4-ethylenedioxyselenophene) (PEDOS) and its derivatives have been shown to have slightly different properties compared to these of polythiophene and PEDOT because of their different electron donating characters, aromaticities (selenophene vs thiophene), oxidation potentials, electronegativities, and polarizabilities (Se vs S). As a result, the polyselenophenes, especially PEDOS and its derivatives, show a lower band gap and higher-lying highest occupied molecular orbital (HOMO) levels compared with those of thiophene and the PEDOT family. In an organic materials context, the PEDOS family offers some advantages over PEDOT derivatives. This Account draws on computational studies, synthetic methods, electrochemical polymerizations, chemical polymerizations, and the materials properties of PEDOS and its derivatives to demonstrate the importance of these novel materials, which lie at the frontier of conducting polymer research. In particular, we show that (i) PEDOS derivatives have a lower band gap (about 0.2 eV) than the corresponding PEDOT derivatives. Consequently, PEDOS derivatives can absorb the solar spectrum more efficiently compared to PEDOT derivatives and the properties of optoelectronic devices based on neutral and doped PEDOS should be somewhat different from these of PEDOT. (ii) EDOS derivatives have a greater tendency to undergo electrochemical polymerization compared to EDOT derivatives and offer stable and smooth polymer films. (iii) The PEDOS backbone is more rigid than the PEDOT backbone. (iv) PEDOS derivatives are excellent electrochromic materials with high transparency, and have higher contrast ratio and coloration efficiency. (v) The PEDOS/C electrode offers better control over the formation and size of nanoparticles through Se···Pt interactions compared with the PEDOT/C electrode. In addition to this, we summarize the synthesis, electrochemical polymerization, materials properties, and computational studies of fused polyselenophene analogues, namely, poly(cyclopenta[c]selenophene), and a series of low band gap thieno- or selenolo-fused polyselenophenes and selenolo-fused polythiophene. Additionally, we discuss oxidative and solid state polymerization to obtain conducting PEDOS, and its derivatives, and made throughout comparison with S-analogue where applicable. We found that EDOS-based derivatives have a greater tendency toward solid state polymerization and working at a temperature about 20 °C lower than that required for EDOT-based compounds. Our results demonstrate the utility of EDOS unit for generating promising materials PEDOS and its derivatives for electronic devices. Consequently, EDOS structure is the basis for many functionalized polymers and copolymers with tunable optoelectronic and redox properties. These interesting properties, which include high conductivity, lower band gap, rigidity, multicolor electrochromism, and rapid redox switching, allow them to be used in a variety of electronic applications.

5.
Chemistry ; 20(18): 5388-96, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24652752

RESUMEN

1,3,7,8-Tetraphenyl-4,8-dihydro-1H-imidazolo[4,5g][1,2,4]benzotriazin-4-yl (5), 8-(4-bromophenyl)-1,3,7-triphenyl-4,8-dihydro-1H-imidazolo[4,5g][1,2,4]benzotriazin-4-yl (6), and 8-(4-methoxyphenyl)-1,3,7-triphenyl-4,8-dihydro-1H-imidazolo[4,5g][1,2,4]benzotriazin-4-yl (7) were characterized by using X-ray diffraction crystallography, variable-temperature magnetic susceptibility studies, and DFT calculations. Radicals 5-7 pack in 1 D π stacks made of radical pairs with alternate short and long interplanar distances. The magnetic susceptibility (χ vs. T) of radicals 5 and 6 exhibit broad maxima at (50±2) and (50±4) K, respectively, and are interpreted in terms of an alternating antiferromagnetic Heisenberg linear chain model with average exchange-interaction values of J = -31.3 and -35.4 cm(-1) (gsolid = 2.0030 and 2.0028) and an alternation parameter a = 0.15 and 0.38 for 5 and 6, respectively. However, radical 7 forms 1 D columns of radical pairs with alternating distances; one of the interplanar distances is significantly longer than the other, which decreases the magnetic dimensionality and leads to discrete dimers with a ferromagnetic exchange interaction between the radicals (2J = 23.6 cm(-1) , 2zJ' = -2.8 cm(-1) , gsolid = 2.0028). Magnetic exchange-coupling interactions in 1,2,4-benzotriazinyl radicals are sensitive to the degree of slippage and inter-radical separation, and such subtle changes in structure alter the fine balance between ferro- and antiferromagnetic interactions.

6.
J Am Chem Soc ; 136(13): 5138-49, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24606028

RESUMEN

Conjugated polymers that can undergo unusual nonoxidative doping were designed. A series of polymers based on donor-acceptor-donor (DAD) moieties 2,1,3-benzoselenadiazole, 2,1,3-benzothiadiazole, 2,1,3-benzoxadiazolebenzo[2,1,5]oxodiazole, and 2-hexylbenzotriazole as acceptor fragments and 3,4-ethylenedioxyselenophene (EDOS) and 3,4-ethylenedioxythiophene (EDOT) as donor fragments was prepared. When the studied polymers were reacted with Lewis acids and bases, notable optical switching and conductivity changes were observed, evidencing the exceptional case of efficient nonoxidative doping/dedoping. Remarkably, in previously reported works, coordination of Lewis acids causes band gap shift but not doping of the conductive polymer, while in the present study, coordination of Lewis acid to highly donating EDOT and EDOS moieties led to polymer doping. The polymers show remarkable stability after numerous switching cycles from neutral to doped states and vice versa and can be switched both electrochemically and chemically. The reactivity of the prepared polymers with Lewis acids and bases of different strengths was studied. Calculation studies of the Lewis acid coordination mode, its effect on polymer energies and band gap, support the unusual doping. The reported doping approach opens up the possibility to control the conjugation, color change, and switching of states of conjugated polymers without oxidation.

7.
Angew Chem Int Ed Engl ; 53(10): 2546-55, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24470351

RESUMEN

While the field of organic electronics has developed extensively in recent years, it remains limited by number of materials available. Further expansion requires the innovation of new types of π-conjugated backbones, but suitable candidates are discovered only very rarely. The recent introduction of a new class of conjugated materials, long α-oligofurans, was therefore greeted with considerable interest. α-Oligofurans possess many of the properties required to excel in applications as organic electronic materials, can be manufactured from renewable resources, and are expected to be biodegradable. This Minireview provides an account of long oligofurans from the perspectives of their synthesis, molecular properties, chemical reactivity, and use in electronic devices.

8.
J Am Chem Soc ; 136(6): 2592-601, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24437464

RESUMEN

Well-defined monodisperse conjugated oligomers, which have planar backbones and are free from the disturbance of substituents, attract broad interest. Herein, we report a series of symmetrical, isomerically pure oligofurans, namely, the 16-mer 16F-6C6 together with the related nF-2C6 (n = 4, 6, 8). Through computational studies and detailed spectroscopic and X-ray characterization, for the first time, we show that the planarity of the furan backbone is almost unaffected by the head-to-head defect which is known to cause considerable twists in its oligo- or polythiophene analogues. We present that the properties of these rigid oligo(alkylfuran)s are strongly influenced by the conjugation length. As the longest monodisperse α-oligofuran synthesized to date, 16F-6C6 was observed to be stable and highly fluorescent. Experimental and computational studies of the redox states of these oligo(alkylfuran)s reveal that 16F-6C6 has singlet biradical (polaron-pair) character in the doubly oxidized ground state: the open-shell singlet (⟨S2⟩ = 0.989) is 3.8 kcal/mol more stable than the closed-shell dication.

9.
J Org Chem ; 78(20): 10058-68, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24060157

RESUMEN

Understanding the mechanism of linear acene decomposition and its reactivity is a prerequisite for controlling the stability of acenes and their future applications. Previously, we suggested that long acenes may undergo polymerization since the polymerization product is thermodynamically more stable than the dimerization product. However, due to kinetic considerations, the most thermodynamically stable product, the polymer, might not necessarily be formed. To elucidate the situation, we investigated the mechanisms of acene polymerization computationally, using pentacene, hexacene, and heptacene as representative examples. Similarly to dimerization, acene polymerization follows a stepwise biradical pathway. Structural and steric hindrance of the polymer backbone forces acene polymerization to proceed via the less reactive noncentral benzene rings. Consequently, dimerization is always kinetically more favorable than polymerization, irrespective of acene length. Although, for long acenes starting from hexacene, both polymerization and dimerization are barrierless pathways relative to the reactants, polymerization is thermodynamically preferred for hexacene and heptacene and even more so for longer acenes (since polymerization forms four new C-C bonds while dimerization forms only two). Indeed, reinvestigation of available experimental data suggests that acene-based polymers were probably obtained experimentally previously.

10.
Chemistry ; 19(39): 13127-39, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23940018

RESUMEN

Recently, α-oligofurans have emerged as interesting and promising organic electronic materials that have certain advantages over α-oligothiophenes. In this work, α-oligofurans were studied computationally, and their properties were compared systematically with those of the corresponding oligothiophenes. Although the two materials share similar electronic structures, overall, this study revealed important differences between α-oligofurans and α-oligothiophenes. Twisting studies on oligofurans revealed them to be significantly more rigid than oligothiophenes in the ground state and first excited state. Neutral α-oligofurans have more quinoid character, higher frontier orbital energies, and higher HOMO-LUMO gaps than their α-oligothiophene counterparts. The theoretical results suggest that oligofurans (and subsequently polyfuran) have lower ionization potentials than the corresponding oligothiophenes (and polythiophene), which in turn predicts that oligofurans can be lightly doped more easily than oligothiophenes. Oligofuran dications (8 F(2+)-14 F(2+)) of medium-sized and longer chain lengths show a polaron-pair character, and the polycations of α-oligofurans cannot accommodate high positive charges as easily as their thiophene analogues.

11.
Chem Commun (Camb) ; 49(77): 8662-4, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23949686

RESUMEN

7-(Fur-2-yl)benzotriazinyl 1 is the first example of a hydrazyl radical dimer with a thermally accessible triplet state. The triplet exciton (|D| = 0.018 cm(-1), |E| = 0.001 cm(-1)) was observed by solid-state VT-EPR spectroscopy between 5 and 140 K. VT crystallography, DFT calculations and magnetic susceptibility studies reveal a strong temperature dependence of the intra-dimer exchange interaction with J/k ~ -254 + 0.0007T(2).

12.
Chemistry ; 19(39): 13140-50, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23934757

RESUMEN

The extent of charge delocalization and of conjugation in oligofurans and oligothiophenes was studied by using mixed valence systems comprising oligofurans and oligothiophenes capped at both ends by ferrocenyl redox units. Using electrochemical, spectral, and computational tools, we find strong charge delocalization in ferrocene-capped oligofurans which was stronger than in the corresponding oligothiophene systems. Spectroscopic studies suggest that the electronic coupling integral (H(ab)) is roughly 30-50 % greater for oligofuran-bridged systems, indicating better energy matching between ferrocene units and oligofurans. The distance decay constant (damping factor), ß, is similar for oligofurans (0.066 A(-1)) and oligothiophenes (0.070 A(-1)), which suggests a similar extent of delocalization in the bridge, despite the higher HOMO-LUMO gap in oligofurans. Computational studies indicate a slightly larger extent of delocalization in furan-bridged systems compared with thiophene-bridged systems, which is consistent with oligofurans being significantly more rigid and less aromatic than oligothiophenes. High charge delocalization in oligofurans, combined with the previously reported strong fluorescence, high mobility, and high rigidity of oligofuran-based materials makes them attractive candidates for organic electronic applications.

13.
Chemistry ; 19(27): 8821-31, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23682014

RESUMEN

Molecular assemblies (MAs) of oligofurans and oligothiophenes were formed from solutions on various substrates. These films were obtained by alternating deposition of organic chromophores (oligofurans or oligothiophenes) and a palladium salt. These coordination-based MAs were characterized by UV/Vis spectroscopy, spectroscopic ellipsometry, atomic force microscopy (AFM), X-ray reflectivity (XRR), X-ray photoelectron spectroscopy (XPS), and electrochemistry. The MAs exhibit similar electrochemical behavior and their growth and structure are apparently not affected when different organic template layers are used. The density of the MAs is a function of the structure of the molecular component. The oligothiophene density is approximately 50% higher than that observed for the oligofuran-based assemblies. The optical and electrochemical properties of the MAs scale linearly with their thickness. The UV/Vis data indicate that upon increasing the film thickness, there is no significant conjugation between the metal-separated organic chromophores. DFT calculations confirmed that the HOMO-LUMO gap of the surface-bound oligofuran and oligothiophene metal oligomers do not change significantly upon increasing their chain length. However, electrochemical measurements indicate that the susceptibility of the MAs towards oxidation is dependent on the number of chromophore units.

14.
Chem Commun (Camb) ; 49(56): 6256-8, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23624944

RESUMEN

A comparative study of two structural isomers highlights the advantages of bifuran vs. bithiophene units in conjugated systems, such as higher fluorescence, solubility, and increased stability of the oxidized species. Importantly, we have found that the small bifuran unit bestows the advantages found in longer oligofurans, and should be considered in the rational design of π-conjugated systems.


Asunto(s)
Furanos/química , Tiofenos/química , Estructura Molecular
15.
J Am Chem Soc ; 134(50): 20412-20, 2012 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23194283

RESUMEN

The detection of chemical or biological analytes upon molecular reactions relies increasingly on fluorescence methods, and there is a demand for more sensitive, more specific, and more versatile fluorescent molecules. We have designed long wavelength fluorogenic probes with a turn-ON mechanism based on a donor-two-acceptor π-electron system that can undergo an internal charge transfer to form new fluorochromes with longer π-electron systems. Several latent donors and multiple acceptor molecules were incorporated into the probe modular structure to generate versatile dye compounds. This new library of dyes had fluorescence emission in the near-infrared (NIR) region. Computational studies reproduced the observed experimental trends well and suggest factors responsible for high fluorescence of the donor-two-acceptor active form and the low fluorescence observed from the latent form. Confocal images of HeLa cells indicate a lysosomal penetration pathway of a selected dye. The ability of these dyes to emit NIR fluorescence through a turn-ON activation mechanism makes them promising candidate probes for in vivo imaging applications.


Asunto(s)
Espectroscopía Infrarroja Corta/métodos , Fluorescencia
16.
Chem Commun (Camb) ; 48(53): 6732-4, 2012 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-22641375

RESUMEN

A Raman spectroscopic analysis revealed that π-conjugation does not reach saturation at least up to the octamer in long α-oligofurans and spreads over 14-15 furan units in the polyfuran. Comparing DFT calculations with experimental results suggests that a considerable amount of HF exchange is required to reproduce computationally the observed conjugation.

17.
Chem Commun (Camb) ; 48(54): 6776-8, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22576670

RESUMEN

We show that interactions between the electrode surface and the transition metal during the initial step of metal nanoparticle formation can be utilized to control the formation and size of metal nanoparticles deposited on a conducting surface. Pt nanoparticles formed on the PEDOS surface are of smaller size compared to the PEDOT surface.

18.
Org Lett ; 14(2): 502-5, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22236351

RESUMEN

Taking advantage of the synthetic availability and solubility of long oligofurans, their reactivity toward dienophiles was studied as a model for the rarely investigated reactivity of long conjugated systems. Unlike oligoacenes, the reactivity of oligofurans decreases or remains constant with increasing chain length. Terminal ring cycloadducts of oligofurans are kinetically and thermodynamically favored, whereas central ring cycloadducts are preferred in oligoacenes, because of the different driving forces in the two reactions: π-conjugation in oligofurans and aromatization/dearomatization in oligoacenes.

19.
J Am Chem Soc ; 133(28): 10803-16, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21710966

RESUMEN

The high reactivity of acenes can reduce their potential applications in the field of molecular electronics. Although pentacene is an important material for use in organic field-effect transistors because of its high charge mobility, its reactivity is a major disadvantage hindering the development of pentacene applications. In this study, several reaction pathways for the thermal dimerization of acenes were considered computationally. The formation of acene dimers via a central benzene ring and the formation of acene-based polymers were found to be the preferred pathways, depending on the length of the monomer. Interestingly, starting from hexacene, acene dimers are thermodynamically disfavored products, and the reaction pathway is predicted to proceed instead via a double cycloaddition reaction (polymerization) to yield acene-based polymers. A concerted asynchronous reaction mechanism was found for benzene and naphthalene dimerization, while a stepwise biradical mechanism was predicted for the dimerization of anthracene, pentacene, and heptacene. The biradical mechanism for dimerization of anthracene and pentacene proceeds via syn or anti transition states and biradical minima through stepwise biradical pathways, while dimerization of heptacene proceeds via asynchronous ring closure of the complex formed by two heptacene molecules. The activation barriers for thermal dimerization decrease rapidly with increasing acene chain length and are calculated (at M06-2X/6-31G(d)+ZPVE) to be 77.9, 57.1, 33.3, -0.3, and -12.1 kcal/mol vs two isolated acene molecules for benzene, naphthalene, anthracene, pentacene, and heptacene, respectively. If activation energy is calculated vs the initially formed complex of two acene molecules, then the calculated barriers are 80.5, 63.2, 43.7, 16.7, and 12.3 kcal/mol. Dimerization is exothermic from anthracene onward, but it is endothermic at the terminal rings, even for heptacene. Phenyl substitution at the most reactive meso-carbon atoms of the central ring of acene blocks the reactivity of this ring but does not efficiently prevent dimerization through other rings.

20.
Acc Chem Res ; 44(1): 14-24, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-20942477

RESUMEN

Given their utility in a variety of electronic devices, conjugated oligomers and polymers have attracted considerable research interest in recent years. Because polymeric materials consist of very large molecules with a range of molecular weights (that is, they are polydisperse), predicting their electronic properties is a complicated task. Accordingly, their properties are typically estimated by extrapolation of oligomeric properties to infinite chain lengths. In this Account, we discuss the convergence behavior of various electronic properties of conjugated oligomers, often using thiophene oligomers as a representative example. We have observed some general trends in our studies, which we briefly summarize below for five properties. Most of the calculated values are method dependent: the absolute values can be strongly dependent on the computational level used. Band Gap. The generally accepted approximation used to estimate polymer band gap, whereby a plot of HOMO-LUMO gap versus 1/n (where n is the number of monomer units) is extrapolated to infinite n, fails for long oligomers, because convergence behavior is observed for band gaps. At the B3LYP/6-31G(d) level, it is possible to extrapolate oligomer HOMO-LUMO gaps with a second-order polynomial equation. Alternatively, PBC/B3LYP/6-31G(d) is a very good method to reliably predict the band gap of conjugated polymers. Reorganization Energy. Values of the internal reorganization energy (λ) do not scale linearly with 1/n, instead exhibiting an inverse correlation with the square-root of the number of monomer units for n = 2-12. For larger n (10-50), a linear relationship is observed between reorganization energy and the reciprocal chain length, and the extrapolation approaches λ ≈ 0 for infinite numbers of oligomer rings. Ionization Potential. The relationship between the first adiabatic ionization potential IP(1a) of oligothiophenes and oligoselenophenes and chain length linearly correlates with an empirically obtained value of 1/(n(0.75)). The first vertical ionization potential (IP(1v)) linearly correlates with a similarly empirically obtained value of 1/(n(0.70)). Polaron-Bipolaron Balance. The contribution of a polaron pair to the electronic structure of the short oligothiophene dication is small; for medium-length oligothiophene chains, the contribution from the polaron pair state begins to become significant. For longer (above 20-mer) oligothiophenes, the polaron pair state dominates. A similar picture was observed for multications as well as doped oligomers and polymers. The qualitative polaron-bipolaron picture does not change when a dopant is introduced; however, quantitatively, the bipolaron-polaron pair equilibrium shifts toward the bipolaron state. Disproportionation Energy. The stability of a single oligothiophene dication versus two cation radical oligothiophene molecules increases with increasing chain length, and there is an excellent correlation between the relative disproportionation energy and the inverse of chain length. A similar trend is observed in the disproportionation energies of oligothiophene polycations as well as doped oligomer and polymers. We also examine doped oligothiophenes (with explicitly included counterions) and polymers with a repeating polar unit. From our experience, it is clear that different properties converge in different ways, and long oligomers (having about 50 double bonds in the backbone) must often be used to correctly extrapolate polymer properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...