Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
2.
Neurobiol Dis ; 199: 106576, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914173

RESUMEN

Variability in disease onset and progression is a hallmark of amyotrophic lateral sclerosis (ALS), both in sporadic and genetic forms. Recently, we found that SOD1-G93A transgenic mice expressing the same amount of mutant SOD1 but with different genetic backgrounds, C57BL/6JOlaHsd and 129S2/SvHsd, show slow and rapid muscle wasting and disease progression, respectively. Here, we investigated the different molecular mechanisms underlying muscle atrophy. Although both strains showed similar denervation-induced degradation of muscle proteins, only the rapidly progressing mice exhibited early and sustained STAT3 activation that preceded atrophy in gastrocnemius muscle. We therefore investigated the therapeutic potential of sunitinib, a tyrosine kinase inhibitor known to inhibit STAT3 and prevent cancer-induced muscle wasting. Although sunitinib treatment reduced STAT3 activation in the gastrocnemius muscle and lumbar spinal cord, it did not preserve spinal motor neurons, improve neuromuscular impairment, muscle atrophy and disease progression in the rapidly progressing SOD1-G93A mice. Thus, the effect of sunitinib is not equally positive in different diseases associated with muscle wasting. Moreover, given the complex role of STAT3 in the peripheral and central compartments of the neuromuscular system, the present study suggests that its broad inhibition may lead to opposing effects, ultimately preventing a potential positive therapeutic action in ALS.

3.
Exp Neurol ; 374: 114716, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38331161

RESUMEN

SOD1 gene is associated with progressive motor neuron degeneration in the familiar forms of amyotrophic lateral sclerosis. Although studies on mutant human SOD1 transgenic rodent models have provided important insights into disease pathogenesis, they have not led to the discovery of early biomarkers or effective therapies in human disease. The recent generation of a transgenic swine model expressing the human pathological hSOD1G93A gene, which recapitulates the course of human disease, represents an interesting tool for the identification of early disease mechanisms and diagnostic biomarkers. Here, we analyze the activation state of CNS cells in transgenic pigs during the disease course and investigate whether changes in neuronal and glial cell activation state can be reflected by the amount of extracellular vesicles they release in biological fluids. To assess the activation state of neural cells, we performed a biochemical characterization of neurons and glial cells in the spinal cords of hSOD1G93A pigs during the disease course. Quantification of EVs of CNS cell origin was performed in cerebrospinal fluid and plasma of transgenic pigs at different disease stages by Western blot and peptide microarray analyses. We report an early activation of oligodendrocytes in hSOD1G93A transgenic tissue followed by astrocyte and microglia activation, especially in animals with motor symptoms. At late asymptomatic stage, EV production from astrocytes and microglia is increased in the cerebrospinal fluid, but not in the plasma, of transgenic pigs reflecting donor cell activation in the spinal cord. Estimation of EV production by biochemical analyses is corroborated by direct quantification of neuron- and microglia-derived EVs in the cerebrospinal fluid by a Membrane Sensing Peptide enabled on-chip analysis that provides fast results and low sample consumption. Collectively, our data indicate that alteration in astrocytic EV production precedes the onset of disease symptoms in the hSODG93A swine model, mirroring donor cell activation in the spinal cord, and suggest that EV measurements from the cells first activated in the ALS pig model, i.e. OPCs, may further improve early disease detection.


Asunto(s)
Esclerosis Amiotrófica Lateral , Vesículas Extracelulares , Ratones , Animales , Humanos , Porcinos , Superóxido Dismutasa-1/genética , Neuronas Motoras/metabolismo , Superóxido Dismutasa/genética , Ratones Transgénicos , Esclerosis Amiotrófica Lateral/patología , Médula Espinal/patología , Neuroglía/patología , Biomarcadores/metabolismo , Péptidos/metabolismo , Modelos Animales de Enfermedad
4.
Nat Commun ; 14(1): 5247, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640701

RESUMEN

Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Animales , Ratones , Enfermedades Neurodegenerativas/genética , Macrófagos , Células Mieloides , Flujo Genético
5.
Cells ; 12(7)2023 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-37048088

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is the most common adult motor neuron disease, with a poor prognosis, a highly unmet therapeutic need, and a burden on health care costs. Hitherto, strategies aimed at protecting motor neurons have missed or modestly delayed ALS due to a failure in countering the irreversible muscular atrophy. We recently provided direct evidence underlying the pivotal role of macrophages in preserving skeletal muscle mass. Based on these results, we explored whether the modulation of macrophage muscle response and the enhancement of satellite cell differentiation could effectively promote the generation of new myofibers and counteract muscle dysfunction in ALS mice. For this purpose, disease progression and the survival of SOD1G93A mice were evaluated following IL-10 injections in the hindlimb skeletal muscles. Thereafter, we used ex vivo methodologies and in vitro approaches on primary cells to assess the effect of the treatment on the main pathological signatures. We found that IL-10 improved the motor performance of ALS mice by enhancing satellite cells and the muscle pro-regenerative activity of macrophages. This resulted in delayed muscle atrophy and motor neuron loss. Our findings provide the basis for a suitable adjunct multisystem therapeutic approach that pinpoints a primary role of muscle pathology in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ratones , Animales , Esclerosis Amiotrófica Lateral/patología , Interleucina-10 , Superóxido Dismutasa , Neuronas Motoras/patología , Modelos Animales de Enfermedad , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/patología
7.
Inflamm Regen ; 43(1): 19, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36895050

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease in terms of onset and progression rate. This may account for therapeutic clinical trial failure. Transgenic SOD1G93A mice on C57 or 129Sv background have a slow and fast disease progression rate, mimicking the variability observed in patients. Based on evidence inferring the active influence of skeletal muscle on ALS pathogenesis, we explored whether dysregulation in hindlimb skeletal muscle reflects the phenotypic difference between the two mouse models. METHODS: Ex vivo immunohistochemical, biochemical, and biomolecular methodologies, together with in vivo electrophysiology and in vitro approaches on primary cells, were used to afford a comparative and longitudinal analysis of gastrocnemius medialis between fast- and slow-progressing ALS mice. RESULTS: We reported that slow-progressing mice counteracted muscle denervation atrophy by increasing acetylcholine receptor clustering, enhancing evoked currents, and preserving compound muscle action potential. This matched with prompt and sustained myogenesis, likely triggered by an early inflammatory response switching the infiltrated macrophages towards a M2 pro-regenerative phenotype. Conversely, upon denervation, fast-progressing mice failed to promptly activate a compensatory muscle response, exhibiting a rapidly progressive deterioration of muscle force. CONCLUSIONS: Our findings further pinpoint the pivotal role of skeletal muscle in ALS, providing new insights into underestimated disease mechanisms occurring at the periphery and providing useful (diagnostic, prognostic, and mechanistic) information to facilitate the translation of cost-effective therapeutic strategies from the laboratory to the clinic.

8.
Brain Res Bull ; 194: 64-81, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36690163

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons and neuromuscular impairment leading to complete paralysis, respiratory failure and premature death. The pathogenesis of the disease is multifactorial and noncell-autonomous involving the central and peripheral compartments of the neuromuscular axis and the skeletal muscle. Advanced clinical trials on specific ALS-related pathways have failed to significantly slow the disease. Therapy with stem cells from different sources has provided a promising strategy to protect the motor units exerting their effect through multiple mechanisms including neurotrophic support and excitotoxicity and neuroinflammation modulation, as evidenced from preclinical studies. Several phase I and II clinical trial of ALS patients have been developed showing positive effects in terms of safety and tolerability. However, the modest results on functional improvement in ALS patients suggest that only a coordinated effort between basic and clinical researchers could solve many problems, such as selecting the ideal stem cell source, identifying their mechanism of action and expected clinical outcomes. A promising approach may be stem cells selected or engineered to deliver optimal growth factor support at multiple sites along the neuromuscular pathway. This review covers recent advances in stem cell therapies in animal models of ALS, as well as detailing the human clinical trials that have been done and are currently undergoing development.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Animales , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas Motoras/metabolismo , Trasplante de Células Madre/métodos , Modelos Animales de Enfermedad
9.
Eur J Neurol ; 30(1): 69-86, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36148821

RESUMEN

BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options. RNS60 is an immunomodulatory and neuroprotective investigational product that has shown efficacy in animal models of ALS and other neurodegenerative diseases. Its administration has been safe and well tolerated in ALS subjects in previous early phase trials. METHODS: This was a phase II, multicentre, randomized, double-blind, placebo-controlled, parallel-group trial. Participants diagnosed with definite, probable or probable laboratory-supported ALS were assigned to receive RNS60 or placebo administered for 24 weeks intravenously (375 ml) once a week and via nebulization (4 ml/day) on non-infusion days, followed by an additional 24 weeks off-treatment. The primary objective was to measure the effects of RNS60 treatment on selected biomarkers of inflammation and neurodegeneration in peripheral blood. Secondary objectives were to measure the effect of RNS60 on functional impairment (ALS Functional Rating Scale-Revised), a measure of self-sufficiency, respiratory function (forced vital capacity, FVC), quality of life (ALS Assessment Questionnaire-40, ALSAQ-40) and survival. Tolerability and safety were assessed. RESULTS: Seventy-four participants were assigned to RNS60 and 73 to placebo. Assessed biomarkers did not differ between arms. The mean rate of decline in FVC and the eating and drinking domain of ALSAQ-40 was slower in the RNS60 arm (FVC, difference 0.41 per week, standard error 0.16, p = 0.0101; ALSAQ-40, difference -0.19 per week, standard error 0.10, p = 0.0319). Adverse events were similar in the two arms. In a post hoc analysis, neurofilament light chain increased over time in bulbar onset placebo participants whilst remaining stable in those treated with RNS60. CONCLUSIONS: The positive effects of RNS60 on selected measures of respiratory and bulbar function warrant further investigation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Calidad de Vida , Método Doble Ciego , Biomarcadores , Resultado del Tratamiento
10.
Acta Neuropathol ; 144(3): 437-464, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35876881

RESUMEN

Dysfunction and degeneration of synapses is a common feature of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). A GGGGCC hexanucleotide repeat expansion in the C9ORF72 gene is the main genetic cause of ALS/FTD (C9ALS/FTD). The repeat expansion leads to reduced expression of the C9orf72 protein. How C9orf72 haploinsufficiency contributes to disease has not been resolved. Here we identify the synapsin family of synaptic vesicle proteins, the most abundant group of synaptic phosphoproteins, as novel interactors of C9orf72 at synapses and show that C9orf72 plays a cell-autonomous role in the regulation of excitatory synapses. We mapped the interaction of C9orf72 and synapsin to the N-terminal longin domain of C9orf72 and the conserved C domain of synapsin, and show interaction of the endogenous proteins in synapses. Functionally, C9orf72 deficiency reduced the number of excitatory synapses and decreased synapsin levels at remaining synapses in vitro in hippocampal neuron cultures and in vivo in the hippocampal mossy fibre system of C9orf72 knockout mice. Consistent with synaptic dysfunction, electrophysiological recordings identified impaired excitatory neurotransmission and network function in hippocampal neuron cultures with reduced C9orf72 expression, which correlated with a severe depletion of synaptic vesicles from excitatory synapses in the hippocampus of C9orf72 knockout mice. Finally, neuropathological analysis of post-mortem sections of C9ALS/FTD patient hippocampus with C9orf72 haploinsufficiency revealed a marked reduction in synapsin, indicating that disruption of the interaction between C9orf72 and synapsin may contribute to ALS/FTD pathobiology. Thus, our data show that C9orf72 plays a cell-autonomous role in the regulation of neurotransmission at excitatory synapses by interaction with synapsin and modulation of synaptic vesicle pools, and identify a novel role for C9orf72 haploinsufficiency in synaptic dysfunction in C9ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72/metabolismo , Demencia Frontotemporal , Sinapsinas/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Ratones , Ratones Noqueados , Sinapsis/patología
11.
J Cachexia Sarcopenia Muscle ; 13(4): 2225-2241, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35611892

RESUMEN

BACKGROUND: The p97 complex participates in the degradation of muscle proteins during atrophy upon fasting or denervation interacting with different protein adaptors. We investigated whether and how it might also be involved in muscle wasting in cancer, where loss of appetite occurs, or amyotrophic lateral sclerosis (ALS), where motoneuron death causes muscle denervation and fatal paralysis. METHODS: As cancer cachexia models, we used mice bearing colon adenocarcinoma C26, human renal carcinoma RXF393, or Lewis lung carcinoma, with breast cancer 4T1-injected mice as controls. As ALS models, we employed 129/SvHsd mice carrying the mutation G93A in human SOD1. The expression of p97 and its adaptors was analysed in their muscles by quantitative real-time polymerase chain reaction (qPCR) and western blot. We electroporated plasmids into muscles or treated mice with disulfiram (DSF) to test the effects of inhibiting p97 and nuclear protein localization protein 4 (Nploc4), one of its adaptors, on atrophy. RESULTS: The mRNA levels of p97 were induced by 1.5-fold to 2-fold in tibialis anterior (TA) of all the cachectic models but not in the non-cachectic 4T1 tumour-bearing mice (P ≤ 0.05). Similarly, p97 was high both in mRNA and protein in TA from 17-week-old SOD1G93A mice (P ≤ 0.01). Electroporation of a shRNA for murine p97 into mouse muscle reduced the fibre atrophy caused by C26 (P = 0.0003) or ALS (P ≤ 0.01). When we interrogated a microarray, we had previously generated for the expression of p97 adaptors, we found Derl1, Herpud1, Nploc4, Rnf31, and Hsp90ab1 induced in cachectic TA from C26-mice (Fold change > 1.2, adjusted P ≤ 0.05). By qPCR, we validated their inductions in TA of cachectic and ALS models and selected Nploc4 as the one also induced at the protein level by 1.5-fold (P ≤ 0.01). Electroporation of a CRISPR/Cas9 vector against Nploc4 into muscle reduced the fibre atrophy caused by C26 (P = 0.01) or ALS (P ≤ 0.0001). Because DSF uncouples p97 from Nploc4, we treated atrophying myotubes with DSF, and found accumulated mono and polyubiquitinated proteins and reduced degradation of long-lived proteins by 35% (P ≤ 0.0001), including actin (P ≤ 0.05). DSF halves Nploc4 in the soluble muscle fraction (P ≤ 0.001) and given to C26-bearing mice limited the body and muscle weight loss (P ≤ 0.05), with no effect on tumour growth. CONCLUSIONS: Overall, cancer cachexia and ALS seem to display similar mechanisms of muscle wasting at least at the catabolic level. The p97-Nploc4 complex appears to have a crucial role in muscle atrophy during these disorders and disrupting this complex might serve as a novel drug strategy.


Asunto(s)
Adenosina Trifosfatasas , Esclerosis Amiotrófica Lateral , Atrofia Muscular , Neoplasias , Proteínas Nucleares , Adenosina Trifosfatasas/genética , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/patología , Animales , Caquexia/patología , Modelos Animales de Enfermedad , Humanos , Proteínas de la Membrana , Ratones , Atrofia Muscular/patología , Neoplasias/complicaciones , Neoplasias/patología , Proteínas Nucleares/genética , ARN Mensajero/genética , Superóxido Dismutasa-1
12.
Mol Ther ; 30(8): 2760-2784, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35477657

RESUMEN

Monocyte chemoattractant protein-1 (MCP1) is one of the most powerful pro-inflammatory chemokines. However, its signaling is pivotal in driving injured axon and muscle regeneration. We previously reported that MCP1 is more strongly upregulated in the nervous system of slow-progressing than fast-progressing SOD1G93A mice, the latter showing a poor immune response and eventual massive nerve and muscle degeneration. To assess the MCP1-mediated therapeutic role, we boosted the chemokine along the motor unit of the two SOD1G93A models through a single intramuscular injection of a scAAV9 vector engineered with the Mcp1 gene. We provided direct evidence underlying the pivotal role of the immune response in driving skeletal muscle regeneration and thus the speed of ALS progression. The comparative study performed in fast- and slow-progressing SOD1G93A mice spotlights the nature and temporal activation of the inflammatory response as limiting factors to preserve the periphery and interfere with the disease course. In addition, we recorded a novel pleiotropic role of MCP1 in promoting peripheral axon regeneration and modulating neuroinflammation, ultimately preventing neurodegeneration. Altogether, these observations highlight the immune response as a key determinant for disease variability and proffer a reasonable explanation for the failure of systemic immunomodulatory treatments, suggesting new potential strategies to hamper ALS progression.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Animales , Axones , Modelos Animales de Enfermedad , Inmunidad , Ratones , Ratones Transgénicos , Músculo Esquelético , Regeneración Nerviosa , Superóxido Dismutasa/genética , Superóxido Dismutasa-1/genética
13.
Cell Mol Life Sci ; 79(1): 7, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936028

RESUMEN

Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons and severe muscle atrophy without effective treatment. Most research on the disease has been focused on studying motor neurons and supporting cells of the central nervous system. Strikingly, the recent observations have suggested that morpho-functional alterations in skeletal muscle precede motor neuron degeneration, bolstering the interest in studying muscle tissue as a potential target for the delivery of therapies. We previously showed that the systemic administration of the P2XR7 agonist, 2'(3')-O-(4-benzoylbenzoyl) adenosine 5-triphosphate (BzATP), enhanced the metabolism and promoted the myogenesis of new fibres in the skeletal muscles of SOD1G93A mice. Here we further corroborated this evidence showing that intramuscular administration of BzATP improved the motor performance of ALS mice by enhancing satellite cells and the muscle pro-regenerative activity of infiltrating macrophages. The preservation of the skeletal muscle retrogradely propagated along with the motor unit, suggesting that backward signalling from the muscle could impinge on motor neuron death. In addition to providing the basis for a suitable adjunct multisystem therapeutic approach in ALS, these data point out that the muscle should be at the centre of ALS research as a target tissue to address novel therapies in combination with those oriented to the CNS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Actividad Motora/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Receptores Purinérgicos P2X7/metabolismo , Adenosina Trifosfato/administración & dosificación , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Animales , Axones/patología , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Desnervación , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Miembro Posterior/patología , Humanos , Inflamación/patología , Inyecciones Intramusculares , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/inervación , Atrofia Muscular/patología , Fenotipo , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/patología , Células de Schwann/patología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/patología
14.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638992

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a disease with a resilient neuroinflammatory component caused by activated microglia and infiltrated immune cells. How to successfully balance neuroprotective versus neurotoxic actions through the use of anti-inflammatory agents is still under debate. There has been a boost of awareness regarding the role of extracellular ATP and purinergic receptors in modulating the physiological and pathological mechanisms in the nervous system. Particularly in ALS, it is known that the purinergic ionotropic P2X7 receptor plays a dual role in disease progression by acting at different cellular and molecular levels. In this context, we previously demonstrated that the P2X7 receptor antagonist, brilliant blue G, reduces neuroinflammation and ameliorates some of the pathological features of ALS in the SOD1-G93A mouse model. Here, we test the novel, noncommercially available, and centrally permeant Axxam proprietary P2X7 antagonist, AXX71, in SOD1-G93A mice, by assessing some behavioral and molecular parameters, among which are disease progression, survival, gliosis, and motor neuron wealth. We demonstrate that AXX71 affects the early symptomatic phase of the disease by reducing microglia-related proinflammatory markers and autophagy without affecting the anti-inflammatory markers or motor neuron survival. Our results suggest that P2X7 modulation can be further investigated as a therapeutic strategy in preclinical studies, and exploited in ALS clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Autofagia/efectos de los fármacos , Progresión de la Enfermedad , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Antiinflamatorios/farmacocinética , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Actividad Motora/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2X/farmacocinética , Receptores Purinérgicos P2X/metabolismo
15.
Neurosci Biobehav Rev ; 127: 958-978, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34153344

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease. Despite decades of research and many new insights into disease biology over the 150 years since the disease was first described, causative pathogenic mechanisms in ALS remain poorly understood, especially in sporadic cases. Our understanding of the role of the immune system in ALS pathophysiology, however, is rapidly expanding. The aim of this manuscript is to summarize the recent advances regarding the immune system involvement in ALS, with particular attention to clinical translation. We focus on the potential pathophysiologic mechanism of the immune system in ALS, discussing local and systemic factors (blood, cerebrospinal fluid, and microbiota) that influence ALS onset and progression in animal models and people. We also explore the potential of Positron Emission Tomography to detect neuroinflammation in vivo, and discuss ongoing clinical trials of therapies targeting the immune system. With validation in human patients, new evidence in this emerging field will serve to identify novel therapeutic targets and provide realistic hope for personalized treatment strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Animales , Humanos , Sistema Inmunológico , Tomografía de Emisión de Positrones
16.
EBioMedicine ; 62: 103097, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33161233

RESUMEN

BACKGROUND: CXCL13 is a B and T lymphocyte chemokine that mediates neuroinflammation through its receptor CXCR5. This chemokine is highly expressed by motoneurons (MNs) in Amyotrophic Lateral Sclerosis (ALS) SOD1G93A (mSOD1) mice during the disease, particularly in fast-progressing mice. Accordingly, in this study, we investigated the role of this chemokine in ALS. METHODS: We used in vitro and in vivo experimental paradigms derived from ALS mice and patients to investigate the expression level and distribution of CXCL13/CXCR5 axis and its role in MN death and disease progression. Moreover, we compared the levels of CXCL13 in the CSF and serum of ALS patients and controls. FINDINGS: CXCL13 and CXCR5 are overexpressed in the spinal MNs and peripheral axons in mSOD1 mice. CXCL13 inhibition in the CNS of ALS mice resulted in the exacerbation of motor impairment (n = 4/group;Mean_Diff.=27.81) and decrease survival (n = 14_Treated:19.2 ± 1.05wks, n = 17_Controls:20.2 ± 0.6wks; 95% CI: 0.4687-1.929). This was corroborated by evidence from primary spinal cultures where the inhibition or activation of CXCL13 exacerbated or prevented the MN loss. Besides, we found that CXCL13/CXCR5 axis is overexpressed in the spinal cord MNs of ALS patients, and CXCL13 levels in the CSF discriminate ALS (n = 30) from Multiple Sclerosis (n = 16) patients with a sensitivity of 97.56%. INTERPRETATION: We hypothesise that MNs activate CXCL13 signalling to attenuate CNS inflammation and prevent the neuromuscular denervation. The low levels of CXCL13 in the CSF of ALS patients might reflect the MN dysfunction, suggesting this chemokine as a potential clinical adjunct to discriminate ALS from other neurological diseases. FUNDING: Vaccinex, Inc.; Regione Lombardia (TRANS-ALS).


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Quimiocina CXCL13/metabolismo , Neuronas Motoras/metabolismo , Receptores CXCR5/metabolismo , Transducción de Señal , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/patología , Animales , Astrocitos/metabolismo , Biomarcadores , Células Cultivadas , Quimiocina CXCL13/genética , Quimiocinas/biosíntesis , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Receptores CXCR5/genética , Transducción Genética
17.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198383

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease with no effective treatment. The Hepatocyte Growth Factor/Scatter Factor (HGF/SF), through its receptor MET, is one of the most potent survival-promoting factors for motor neurons (MN) and is known as a modulator of immune cell function. We recently developed a novel recombinant MET agonist optimized for therapy, designated K1K1. K1K1 was ten times more potent than HGF/SF in preventing MN loss in an in vitro model of ALS. Treatments with K1K1 delayed the onset of muscular impairment and reduced MN loss and skeletal muscle denervation of superoxide dismutase 1 G93A (SOD1G93A) mice. This effect was associated with increased levels of phospho-extracellular signal-related kinase (pERK) in the spinal cord and sciatic nerves and the activation of non-myelinating Schwann cells. Moreover, reduced activated microglia and astroglia, lower T cells infiltration and increased interleukin 4 (IL4) levels were found in the lumbar spinal cord of K1K1 treated mice. K1K1 treatment also prevented the infiltration of T cells in skeletal muscle of SOD1G93A mice. All these protective effects were lost on long-term treatment suggesting a mechanism of drug tolerance. These data provide a rational justification for further exploring the long-term loss of K1K1 efficacy in the perspective of providing a potential treatment for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Factor de Crecimiento de Hepatocito/agonistas , Sistema Inmunológico , Neuronas/citología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/inmunología , Animales , Astrocitos/citología , Astrocitos/metabolismo , Conducta Animal , Supervivencia Celular , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perros , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Gliosis/metabolismo , Humanos , Interleucina-4/metabolismo , Kringles , Ligandos , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Neuronas Motoras/metabolismo , Neuronas/metabolismo , Células de Schwann/metabolismo , Médula Espinal/metabolismo , Linfocitos T/citología
18.
Artículo en Inglés | MEDLINE | ID: mdl-32583689

RESUMEN

The clinical manifestations of amyotrophic lateral sclerosis (ALS) are variable in terms of age at disease onset, site of onset, progression of symptoms, motor neuron involvement, and the occurrence of cognitive and behavioral changes. Genetic background is a key determinant of the ALS phenotype. The mortality of the disease also varies with the ancestral origin of the affected population and environmental factors are likely to be associated with ALS at least within some cohorts. Disease heterogeneity is likely underpinned by the presence of different pathogenic mechanisms. A variety of ALS animal models can be informative about the heterogeneity of the neuropathological or genetic aspects of the disease and can support the development of new therapeutic intervention. Evolving biomarkers can contribute to the identification of differing genotypes and phenotypes, and can be used to explore whether genotypic and phenotypic differences in animal models might help to provide a better definition of the heterogeneity of ALS in humans. These include neurofilaments, peripheral blood mononuclear cells, extracellular vesicles, microRNA and imaging findings. These biomarkers might predict not only the development of the disease, but also the variability in progression, although robust validation is required. A promising area of progress in modeling the heterogeneity of human ALS is represented by the use of human induced pluripotent stem cell (iPSCs)-derived motor neurons. Although the translational value of iPSCs remains unclear, this model is attractive in the perspective of replicating the heterogeneity of sporadic ALS as a first step toward a personalized medicine strategy.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Animales , Humanos , Leucocitos Mononucleares , Neuronas Motoras , Fenotipo
19.
Cells ; 9(5)2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397320

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with no recognized clinical prognostic factor. Creatinine kinase (CK) increase in these patients is already described with conflicting results on prognosis and survival. In 126 ALS patients who were fast or slow disease progressors, CK levels were assayed for 16 months every 4 months in an observational case-control cohort study with prospective data collection conducted in Italy. CK was also measured at baseline in 88 CIDP patients with secondary axonal damage and in two mouse strains (129SvHSD and C57-BL) carrying the same SOD1G93A transgene expression but showing a fast (129Sv-SOD1G93A) and slow (C57-SOD1G93A) ALS progression rate. Higher CK was found in ALS slow progressors compared to fast progressors in T1, T2, T3, and T4, with a correlation with Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) scores. Higher CK was found in spinal compared to bulbar-onset patients. Transgenic and non-transgenic C57BL mice showed higher CK levels compared to 129SvHSD strain. At baseline mean CK was higher in ALS compared to CIDP. CK can predict the disease progression, with slow progressors associated with higher levels and fast progressors to lower levels, in both ALS patients and mice. CK is higher in ALS patients compared to patients with CIDP with secondary axonal damage; the higher levels of CK in slow progressors patients, but also in C57BL transgenic and non-transgenic mice designs CK as a predisposing factor for disease rate progression.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Creatina Quinasa/metabolismo , Progresión de la Enfermedad , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/sangre , Animales , Creatina Quinasa/sangre , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Mioglobina/metabolismo , Factores de Tiempo
20.
Prog Neurobiol ; 190: 101803, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32335272

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a relentless and fatal neurological disease characterized by the selective degeneration of motor neurons. No effective therapy is available for this disease. Several lines of evidence indicate that alteration of RNA metabolism, including microRNA (miRNA) processing, is a relevant pathogenetic factor and a possible therapeutic target for ALS. Here, we showed that the abundance of components in the miRNA processing machinery is altered in a SOD1-linked cellular model, suggesting consequent dysregulation of miRNA biogenesis. Indeed, high-throughput sequencing of the small RNA fraction showed that among the altered miRNAs, miR-129-5p was increased in different models of SOD1-linked ALS and in peripheral blood cells of sporadic ALS patients. We demonstrated that miR-129-5p upregulation causes the downregulation of one of its targets: the RNA-binding protein ELAVL4/HuD. ELAVL4/HuD is predominantly expressed in neurons, where it controls several key neuronal mRNAs. Overexpression of pre-miR-129-1 inhibited neurite outgrowth and differentiation via HuD silencing in vitro, while its inhibition with an antagomir rescued the phenotype. Remarkably, we showed that administration of an antisense oligonucleotide (ASO) inhibitor of miR-129-5p to an ALS animal model, SOD1 (G93A) mice, result in a significant increase in survival and improved the neuromuscular phenotype in treated mice. These results identify miR-129-5p as a therapeutic target that is amenable to ASO modulation for the treatment of ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Proteína 4 Similar a ELAV , Humanos , Ratones , MicroARNs/genética , Oligonucleótidos Antisentido/farmacología , Superóxido Dismutasa-1 , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...