Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(2): e24516, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298706

RESUMEN

Intelligent and green wearable technology becomes essential for new modern societies. This work introduces a multi criteria decision making model to properly assess and compare relative desired criteria for selecting the most suitable constituents for green body wearable bio-products made from bio-based materials. It aims to enhance the sustainability of intelligent green wearable devices by providing support in the selection process of lightweight, eco-friendly materials suitable for personal body wearable bio-products made of natural fiber composites to improve qualities that may help in better monitoring human vital signs and thereby address the health care concern. The relative intrinsic characteristic and merits of various natural fibers were utilized to compare and evaluate their relative performance in bio-composites. The model considered several evaluation factors like mechanical performance including tensile strength and modulus of elasticity, comfortability including size and weight, availability, fiber orientation, cellulose content, and cost. Results have demonstrated different priorities of the considered natural fibers relative to each evaluation factor. However, the model was capable of properly evaluating and ranking the best fibers relative to the whole conflicting evaluation criteria simultaneously. The closeness of priorities in several cases emphasizes upon using such decision making models to be able to judge the relative merits of natural fibers for such applications. It can also help designers to avoid bias during determining the best alternatives considering several conflicting evaluation criteria.

2.
Entropy (Basel) ; 20(7)2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33265619

RESUMEN

In this paper, we propose a fractional map based on the integer-order unified map. The chaotic behavior of the proposed map is analyzed by means of bifurcations plots, and experimental bounds are placed on the parameters and fractional order. Different control laws are proposed to force the states to zero asymptotically and to achieve the complete synchronization of a pair of fractional unified maps with identical or nonidentical parameters. Numerical results are used throughout the paper to illustrate the findings.

3.
Entropy (Basel) ; 20(9)2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-33265799

RESUMEN

This paper is concerned with the co-existence of different synchronization types for fractional-order discrete-time chaotic systems with different dimensions. In particular, we show that through appropriate nonlinear control, projective synchronization (PS), full state hybrid projective synchronization (FSHPS), and generalized synchronization (GS) can be achieved simultaneously. A second nonlinear control scheme is developed whereby inverse full state hybrid projective synchronization (IFSHPS) and inverse generalized synchronization (IGS) are shown to co-exist. Numerical examples are presented to confirm the findings.

4.
Entropy (Basel) ; 20(10)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-33265809

RESUMEN

In this paper, we investigate the dynamics of a fractional order chaotic map corresponding to a recently developed standard map that exhibits a chaotic behavior with no fixed point. This is the first study to explore a fractional chaotic map without a fixed point. In our investigation, we use phase plots and bifurcation diagrams to examine the dynamics of the fractional map and assess the effect of varying the fractional order. We also use the approximate entropy measure to quantify the level of chaos in the fractional map. In addition, we propose a one-dimensional stabilization controller and establish its asymptotic convergence by means of the linearization method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...