Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36904339

RESUMEN

The development of the modern society imposes a fast-growing demand for new advanced functional polymer materials. To this aim, one of the most plausible current methodologies is the end-group functionalization of existing conventional polymers. If the end functional group is able to polymerize, this method enables the synthesis of a molecularly complex, grafted architecture that opens the access to a wider range of material properties, as well as tailoring the special functions required for certain applications. In this context, the present paper reports on α-thienyl-ω-hydroxyl-end-groups functionalized oligo-(D,L-lactide) (Th-PDLLA), which was designed to combine the polymerizability and photophysical properties of thiophene with the biocompatibility and biodegradability of poly-(D,L-lactide). Th-PDLLA was synthesized using the path of "functional initiator" in the ring-opening polymerization (ROP) of (D,L)-lactide, assisted by stannous 2-ethyl hexanoate (Sn(oct)2). The results of NMR and FT-IR spectroscopic methods confirmed the Th-PDLLA's expected structure, while the oligomeric nature of Th-PDLLA, as resulting from the calculations based on 1H-NMR data, is supported by the findings from gel permeation chromatography (GPC) and by the results of the thermal analyses. The behavior of Th-PDLLA in different organic solvents, evaluated by UV-vis and fluorescence spectroscopy, but also by dynamic light scattering (DLS), suggested the presence of colloidal supramolecular structures, underlining the nature of the macromonomer Th-PDLLA as an "shape amphiphile". To test its functionality, the ability of Th-PDLLA to work as a building block for the synthesis of molecular composites was demonstrated by photoinduced oxidative homopolymerization in the presence of diphenyliodonium salt (DPI). The occurrence of a polymerization process, with the formation of a thiophene-conjugated oligomeric main chain grafted with oligomeric PDLLA, was proven, in addition to the visual changes, by the results of GPC, 1H-NMR, FT-IR, UV-vis and fluorescence measurements.

2.
Int J Mol Sci ; 23(14)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35886844

RESUMEN

Because the combination of π-conjugated polymers with biocompatible synthetic counterparts leads to the development of bio-relevant functional materials, this paper reports a new oligo(2-methyl-2-oxazoline) (OMeOx)-containing thiophene macromonomer, denoted Th-OMeOx. It can be used as a reactive precursor for synthesis of a polymerizable 2,2'-3-OMeOx-substituted bithiophene by Suzuki coupling. Also a grafted polythiophene amphiphile with OMeOx side chains was synthesized by its self-acid-assisted polymerization (SAAP) in bulk. The results showed that Th-OMeOx is not only a reactive intermediate but also a versatile functional material in itself. This is due to the presence of 2-bromo-substituted thiophene and ω-hydroxyl functional end-groups, and due to the multiple functionalities encoded in its structure (photosensitivity, water self-dispersibility, self-assembling capacity). Thus, analysis of its behavior in solvents of different selectivities revealed that Th-OMeOx forms self-assembled structures (micelles or vesicles) by "direct dissolution".Unexpectedly, by exciting the Th-OMeOx micelles formed in water with λabs of the OMeOx repeating units, the intensity of fluorescence emission varied in a concentration-dependent manner.These self-assembled structures showed excitation-dependent luminescence as well. Attributed to the clusteroluminescence phenomenon due to the aggregation and through space interactions of electron-rich groups in non-conjugated, non-aromatic OMeOx, this behavior certifies that polypeptides mimic the character of Th-OMeOx as a non-conventional intrinsic luminescent material.


Asunto(s)
Micelas , Polímeros , Oxazoles , Polímeros/química , Tiofenos , Agua/química
3.
Polymers (Basel) ; 13(16)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34451259

RESUMEN

End-group functionalization of homopolymers is a valuable way to produce high-fidelity nanostructured and functional soft materials when the structures obtained have the capacity for self-assembly (SA) encoded in their structural details. Herein, an end-functionalized PCL with a π-conjugated EDOT moiety, (EDOT-PCL), designed exclusively from hydrophobic domains, as a functional "hydrophobic amphiphile", was synthesized in the bulk ROP of ε-caprolactone. The experimental results obtained by spectroscopic methods, including NMR, UV-vis, and fluorescence, using DLS and by AFM, confirm that in solvents with extremely different polarities (chloroform and acetonitrile), EDOT-PCL presents an interaction- and structure-based bias, which is strong and selective enough to exert control over supramolecular packing, both in dispersions and in the film state. This leads to the diversity of SA structures, including spheroidal, straight, and helical rods, as well as orthorhombic single crystals, with solvent-dependent shapes and sizes, confirming that EDOT-PCL behaves as a "block-molecule". According to the results from AFM imaging, an unexpected transformation of micelle-type nanostructures into single 2D lamellar crystals, through breakout crystallization, took place by simple acetonitrile evaporation during the formation of the film on the mica support at room temperature. Moreover, EDOT-PCL's propensity for spontaneous oxidant-free oligomerization in acidic media was proposed as a presumptive answer for the unexpected appearance of blue color during its dissolution in CDCl3 at a high concentration. FT-IR, UV-vis, and fluorescence techniques were used to support this claim. Besides being intriguing and unforeseen, the experimental findings concerning EDOT-PCL have raised new and interesting questions that deserve to be addressed in future research.

4.
J Mater Chem B ; 1(33): 4135-4145, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32260966

RESUMEN

The properties, microscopic organization and behavior as the cellular matrix of an all-conjugated polythiophene backbone (PTh) and well-defined poly(ethylene glycol) (PEG) grafted chains have been investigated using different experimental techniques and molecular dynamic simulations. UV-vis spectroscopy has been used to determine the optical band gap, which has been found to vary between 2.25 and 2.9 eV depending on the length of the PEG chains and the chemical nature of the dopant anion, and to detect polaron → bipolaron transitions between band gap states. The two graft copolymers have been found to be excellent cellular matrices, their behavior being remarkably better than that found for other biocompatible polythiophene derivatives [e.g. poly(3,4-ethylenedioxythiophene)]. This is fully consistent with the hydrophilicity of the copolymers, which increases with the molecular weight of the PEG chains, and the molecular organization predicted by atomistic molecular dynamics simulations. Graft copolymers tethered to the surface tend to form biphasic structures in solvated environments (i.e. extended PTh and PEG fragments are perpendicular and parallel to the surface, respectively) while they collapse onto the surface in desolvated environments. Furthermore, the electrochemical activity and the maximum of current density are remarkably higher for samples coated with cells than for uncoated samples, suggesting multiple biotechnological applications in which the transmission with cells is carried out at the electrochemical level.

5.
J Biomater Appl ; 26(1): 3-84, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21680608

RESUMEN

This review focuses on one of the most exciting applications area of conjugated conducting polymers, which is tissue engineering. Strategies used for the biocompatibility improvement of this class of polymers (including biomolecules' entrapment or covalent grafting) and also the integrated novel technologies for smart scaffolds generation such as micropatterning, electrospinning, self-assembling are emphasized. These processing alternatives afford the electroconducting polymers nanostructures, the most appropriate forms of the materials that closely mimic the critical features of the natural extracellular matrix. Due to their capability to electronically control a range of physical and chemical properties, conducting polymers such as polyaniline, polypyrrole, and polythiophene and/or their derivatives and composites provide compatible substrates which promote cell growth, adhesion, and proliferation at the polymer-tissue interface through electrical stimulation. The activities of different types of cells on these materials are also presented in detail. Specific cell responses depend on polymers surface characteristics like roughness, surface free energy, topography, chemistry, charge, and other properties as electrical conductivity or mechanical actuation, which depend on the employed synthesis conditions. The biological functions of cells can be dramatically enhanced by biomaterials with controlled organizations at the nanometer scale and in the case of conducting polymers, by the electrical stimulation. The advantages of using biocompatible nanostructures of conducting polymers (nanofibers, nanotubes, nanoparticles, and nanofilaments) in tissue engineering are also highlighted.


Asunto(s)
Materiales Biocompatibles/química , Polímeros/química , Ingeniería de Tejidos/tendencias , Animales , Materiales Biocompatibles/metabolismo , Conductividad Eléctrica , Humanos , Polímeros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...