Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 17733, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853114

RESUMEN

Lactate accumulation and acidification in tumours are a cancer hallmark associated with the Warburg effect. Lactic acidosis correlates with cancer malignancy, and the benefit it offers to tumours has been the subject of numerous hypotheses. Strikingly, lactic acidosis enhances cancer cell survival to environmental glucose depletion by repressing high-rate glycolysis and lactic fermentation, and promoting an oxidative metabolism involving reactivated respiration. We used real-time NMR to evaluate how cytosolic lactate accumulation up to 40 mM and acidification up to pH 6.5 individually impact glucose consumption, lactate production and pyruvate evolution in isolated cytosols. We used a reductive cell-free system (CFS) to specifically study cytosolic metabolism independently of other Warburg-regulatory mechanisms found in the cell. We assessed the impact of lactate and acidification on the Warburg metabolism of cancer cytosols, and whether this effect extended to different cytosolic phenotypes of lactic fermentation and cancer. We observed that moderate acidification, independently of lactate concentration, drastically reduces the glucose consumption rate and halts lactate production in different lactic fermentation phenotypes. In parallel, for Warburg-type CFS lactate supplementation induces pyruvate accumulation at control pH, and can maintain a higher cytosolic pyruvate pool at low pH. Altogether, we demonstrate that intracellular acidification accounts for the direct repression of lactic fermentation by the Warburg-associated lactic acidosis.


Asunto(s)
Acidosis Láctica , Neoplasias , Humanos , Ácido Láctico/metabolismo , Acidosis Láctica/metabolismo , Fermentación , Sistema Libre de Células/metabolismo , Glucólisis , Neoplasias/patología , Piruvatos/metabolismo , Glucosa/metabolismo , Concentración de Iones de Hidrógeno
2.
JHEP Rep ; 5(3): 100647, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36718430

RESUMEN

Background & Aims: Chronic HCV infection causes cellular stress, fibrosis and predisposes to hepatocarcinogenesis. Mitochondria play key roles in orchestrating stress responses by regulating bioenergetics, inflammation and apoptosis. To better understand the role of mitochondria in the viral life cycle and disease progression of chronic hepatitis C, we studied morphological and functional mitochondrial alterations induced by HCV using productively infected hepatoma cells and patient livers. Methods: Biochemical and imaging assays were used to assess localization of cellular and viral proteins and mitochondrial functions in cell cultures and liver biopsies. Cyclophilin D (CypD) knockout was performed using CRISPR/Cas9 technology. Viral replication was quantified by quantitative reverse-transcription PCR and western blotting. Results: Several HCV proteins were found to associate with mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), the points of contact between the ER and mitochondria. Downregulation of CypD, which is known to disrupt MAM integrity, reduced viral replication, suggesting that MAMs play an important role in the viral life cycle. This process was rescued by ectopic CypD expression. Furthermore, HCV proteins were found to associate with voltage dependent anion channel 1 (VDAC1) at MAMs and to reduce VDAC1 protein levels at MAMs in vitro and in patient biopsies. This association did not affect MAM-associated functions in glucose homeostasis and Ca2+ signaling. Conclusions: HCV proteins associate specifically with MAMs and MAMs play an important role in viral replication. The association between viral proteins and MAMs did not impact Ca2+ signaling between the ER and mitochondria or glucose homeostasis. Whether additional functions of MAMs and/or VDAC are impacted by HCV and contribute to the associated pathology remains to be assessed. Impact and implications: Hepatitis C virus infects the liver, where it causes inflammation, cell damage and increases the long-term risk of liver cancer. We show that several HCV proteins interact with mitochondria in liver cells and alter the composition of mitochondrial subdomains. Importantly, HCV requires the architecture of these mitochondrial subdomains to remain intact for efficient viral replication.

3.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498891

RESUMEN

For many years, it has been clear that a Western diet rich in saturated fats and sugars promotes an inflammatory environment predisposing a person to chronic cardiometabolic diseases. In parallel, the emergence of ketogenic diets, deprived of carbohydrates and promoting the synthesis of ketone bodies imitating the metabolic effects of fasting, has been shown to provide a possible nutritional solution to alleviating diseases triggered by an inflammatory environment. The main ketone body, ß-hydroxybutyrate (BHB), acts as an alternative fuel, and also as a substrate for a novel histone post-translational modification, ß-hydroxybutyrylation. ß-hydroxybutyrylation influences the state of chromatin architecture and promotes the transcription of multiple genes. BHB has also been shown to modulate inflammation in chronic diseases. In this review, we discuss, in the pathological context of cardiovascular risks, the current understanding of how ketone bodies, or a ketogenic diet, are able to modulate, trigger, or inhibit inflammation and how the epigenome and chromatin remodeling may be a key contributor.


Asunto(s)
Dieta Cetogénica , Cuerpos Cetónicos , Humanos , Cuerpos Cetónicos/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Epigenómica , Inflamación
4.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408928

RESUMEN

Diabetic cardiomyopathy (DCM) is a leading complication in type 2 diabetes patients. Recently, we have shown that the reticulum-mitochondria Ca2+ uncoupling is an early and reversible trigger of the cardiac dysfunction in a diet-induced mouse model of DCM. Metformin is a first-line antidiabetic drug with recognized cardioprotective effect in myocardial infarction. Whether metformin could prevent the progression of DCM remains not well understood. We therefore investigated the effect of a chronic 6-week metformin treatment on the reticulum-mitochondria Ca2+ coupling and the cardiac function in our high-fat high-sucrose diet (HFHSD) mouse model of DCM. Although metformin rescued the glycemic regulation in the HFHSD mice, it did not preserve the reticulum-mitochondria Ca2+ coupling either structurally or functionally. Metformin also did not prevent the progression towards cardiac dysfunction, i.e., cardiac hypertrophy and strain dysfunction. In summary, despite its cardioprotective role, metformin is not sufficient to delay the progression to early DCM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Metformina , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/etiología , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Volumen Sistólico
5.
J Hepatol ; 77(3): 710-722, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35358616

RESUMEN

BACKGROUND & AIMS: Hepatic insulin resistance in obesity and type 2 diabetes was recently associated with endoplasmic reticulum (ER)-mitochondria miscommunication. These contact sites (mitochondria-associated membranes: MAMs) are highly dynamic and involved in many functions; however, whether MAM dysfunction plays a causal role in hepatic insulin resistance and steatosis is not clear. Thus, we aimed to determine whether and how organelle miscommunication plays a role in the onset and progression of hepatic metabolic impairment. METHODS: We analyzed hepatic ER-mitochondria interactions and calcium exchange in a time-dependent and reversible manner in mice with diet-induced obesity. Additionally, we used recombinant adenovirus to express a specific organelle spacer or linker in mouse livers, to determine the causal impact of MAM dysfunction on hepatic metabolic alterations. RESULTS: Disruption of ER-mitochondria interactions and calcium exchange is an early event preceding hepatic insulin resistance and steatosis in mice with diet-induced obesity. Interestingly, an 8-week reversal diet concomitantly reversed hepatic organelle miscommunication and insulin resistance in obese mice. Mechanistically, disrupting structural and functional ER-mitochondria interactions through the hepatic overexpression of the organelle spacer FATE1 was sufficient to impair hepatic insulin action and glucose homeostasis. In addition, FATE1-mediated organelle miscommunication disrupted lipid-related mitochondrial oxidative metabolism and induced hepatic steatosis. Conversely, reinforcement of ER-mitochondria interactions through hepatic expression of a synthetic linker prevented diet-induced glucose intolerance after 4 weeks' overnutrition. Importantly, ER-mitochondria miscommunication was confirmed in the liver of obese patients with type 2 diabetes, and correlated with glycemia, HbA1c and HOMA-IR index. CONCLUSIONS: ER-mitochondria miscommunication is an early causal trigger of hepatic insulin resistance and steatosis, and can be reversed by switching to a healthy diet. Thus, targeting MAMs could help to restore metabolic homeostasis. LAY SUMMARY: The literature suggests that interactions between the endoplasmic reticulum and mitochondria could play a role in hepatic insulin resistance and steatosis during chronic obesity. In the present study, we reappraised the time-dependent regulation of hepatic endoplasmic reticulum-mitochondria interactions and calcium exchange, investigating reversibility and causality, in mice with diet-induced obesity. We also assessed the relevance of our findings to humans. We show that organelle miscommunication is an early causal trigger of hepatic insulin resistance and steatosis that can be improved by nutritional strategies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Resistencia a la Insulina , Hepatopatías , Animales , Calcio/metabolismo , Comunicación , Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplásmico/metabolismo , Hígado Graso/etiología , Hígado Graso/metabolismo , Glucosa/metabolismo , Humanos , Hígado/metabolismo , Hepatopatías/metabolismo , Ratones , Mitocondrias/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Factores de Transcripción/metabolismo
6.
Dis Model Mech ; 14(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34378772

RESUMEN

Mitochondrial diseases are genetic disorders that lead to impaired mitochondrial function, resulting in exercise intolerance and muscle weakness. In patients, muscle fatigue due to defects in mitochondrial oxidative capacities commonly precedes muscle weakness. In mice, deletion of the fast-twitch skeletal muscle-specific Tfam gene (Tfam KO) leads to a deficit in respiratory chain activity, severe muscle weakness and early death. Here, we performed a time-course study of mitochondrial and muscular dysfunctions in 11- and 14-week-old Tfam KO mice, i.e. before and when mice are about to enter the terminal stage, respectively. Although force in the unfatigued state was reduced in Tfam KO mice compared to control littermates (wild type) only at 14 weeks, during repeated submaximal contractions fatigue was faster at both ages. During fatiguing stimulation, total phosphocreatine breakdown was larger in Tfam KO muscle than in wild-type muscle at both ages, whereas phosphocreatine consumption was faster only at 14 weeks. In conclusion, the Tfam KO mouse model represents a reliable model of lethal mitochondrial myopathy in which impaired mitochondrial energy production and premature fatigue occur before muscle weakness and early death.


Asunto(s)
Fatiga Muscular , Debilidad Muscular , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fatiga Muscular/fisiología , Debilidad Muscular/complicaciones , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo
7.
Nat Commun ; 12(1): 720, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526781

RESUMEN

Cellular senescence is induced by stresses and results in a stable proliferation arrest accompanied by a pro-inflammatory secretome. Senescent cells accumulate during aging, promoting various age-related pathologies and limiting lifespan. The endoplasmic reticulum (ER) inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) calcium-release channel and calcium fluxes from the ER to the mitochondria are drivers of senescence in human cells. Here we show that Itpr2 knockout (KO) mice display improved aging such as increased lifespan, a better response to metabolic stress, less immunosenescence, as well as less liver steatosis and fibrosis. Cellular senescence, which is known to promote these alterations, is decreased in Itpr2 KO mice and Itpr2 KO embryo-derived cells. Interestingly, ablation of ITPR2 in vivo and in vitro decreases the number of contacts between the mitochondria and the ER and their forced contacts induce premature senescence. These findings shed light on the role of contacts and facilitated exchanges between the ER and the mitochondria through ITPR2 in regulating senescence and aging.


Asunto(s)
Senescencia Celular/fisiología , Retículo Endoplásmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Longevidad/fisiología , Mitocondrias/metabolismo , Animales , Calcio/metabolismo , Retículo Endoplásmico/ultraestructura , Femenino , Fibroblastos , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Mitocondrias/ultraestructura , ARN Interferente Pequeño , Periodo Refractario Electrofisiológico , Análisis de la Célula Individual
8.
Basic Res Cardiol ; 115(6): 74, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33258101

RESUMEN

Type 2 diabetic cardiomyopathy features Ca2+ signaling abnormalities, notably an altered mitochondrial Ca2+ handling. We here aimed to study if it might be due to a dysregulation of either the whole Ca2+ homeostasis, the reticulum-mitochondrial Ca2+ coupling, and/or the mitochondrial Ca2+ entry through the uniporter. Following a 16-week high-fat high-sucrose diet (HFHSD), mice developed cardiac insulin resistance, fibrosis, hypertrophy, lipid accumulation, and diastolic dysfunction when compared to standard diet. Ultrastructural and proteomic analyses of cardiac reticulum-mitochondria interface revealed tighter interactions not compatible with Ca2+ transport in HFHSD cardiomyocytes. Intramyocardial adenoviral injections of Ca2+ sensors were performed to measure Ca2+ fluxes in freshly isolated adult cardiomyocytes and to analyze the direct effects of in vivo type 2 diabetes on cardiomyocyte function. HFHSD resulted in a decreased IP3R-VDAC interaction and a reduced IP3-stimulated Ca2+ transfer to mitochondria, with no changes in reticular Ca2+ level, cytosolic Ca2+ transients, and mitochondrial Ca2+ uniporter function. Disruption of organelle Ca2+ exchange was associated with decreased mitochondrial bioenergetics and reduced cell contraction, which was rescued by an adenovirus-mediated expression of a reticulum-mitochondria linker. An 8-week diet reversal was able to restore cardiac insulin signaling, Ca2+ transfer, and cardiac function in HFHSD mice. Therefore, our study demonstrates that the reticulum-mitochondria Ca2+ miscoupling may play an early and reversible role in the development of diabetic cardiomyopathy by disrupting primarily the mitochondrial bioenergetics. A diet reversal, by counteracting the MAM-induced mitochondrial Ca2+ dysfunction, might contribute to restore normal cardiac function and prevent the exacerbation of diabetic cardiomyopathy.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Canales de Calcio/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/dietoterapia , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/patología , Dieta Alta en Grasa , Sacarosa en la Dieta , Retículo Endoplásmico/patología , Metabolismo Energético , Acoplamiento Excitación-Contracción , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Resistencia a la Insulina , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/patología , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/patología , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
9.
Cells ; 8(11)2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731523

RESUMEN

Under physiological conditions, nitric oxide (NO) produced by the endothelial NO synthase (eNOS) upregulates hepatic insulin sensitivity. Recently, contact sites between the endoplasmic reticulum and mitochondria named mitochondria-associated membranes (MAMs) emerged as a crucial hub for insulin signaling in the liver. As mitochondria are targets of NO, we explored whether NO regulates hepatic insulin sensitivity by targeting MAMs. In Huh7 cells, primary rat hepatocytes and mouse livers, enhancing NO concentration increased MAMs, whereas inhibiting eNOS decreased them. In vitro, those effects were prevented by inhibiting protein kinase G (PKG) and mimicked by activating soluble guanylate cyclase (sGC) and PKG. In agreement with the regulation of MAMs, increasing NO concentration improved insulin signaling, both in vitro and in vivo, while eNOS inhibition disrupted this response. Finally, inhibition of insulin signaling by wortmannin did not affect the impact of NO on MAMs, while experimental MAM disruption, using either targeted silencing of cyclophilin D or the overexpression of the organelle spacer fetal and adult testis-expressed 1 (FATE-1), significantly blunted the effects of NO on both MAMs and insulin response. Therefore, under physiological conditions, NO participates to the regulation of MAM integrity through the sGC/PKG pathway and concomitantly improves hepatic insulin sensitivity. Altogether, our data suggest that the induction of MAMs participate in the impact of NO on hepatocyte insulin response.


Asunto(s)
Hepatocitos/metabolismo , Resistencia a la Insulina/fisiología , Membranas Mitocondriales/metabolismo , Animales , Línea Celular Tumoral , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Retículo Endoplásmico/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III , Cultivo Primario de Células , Ratas , Transducción de Señal/efectos de los fármacos , Guanilil Ciclasa Soluble/metabolismo , Wortmanina/metabolismo
10.
J Appl Physiol (1985) ; 127(5): 1297-1306, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31487224

RESUMEN

Exercise is important to maintain skeletal muscle mass through stimulation of protein synthesis, which is a major ATP-consuming process for cells. However, muscle cells have to face high energy demand during contraction. The present study aimed to investigate protein synthesis regulation during aerobic exercise in mouse hindlimb muscles. Male C57Bl/6J mice ran at 12 m/min for 45 min or at 12 m/min for the first 25 min followed by a progressive increase in velocity up to 20 m/min for the last 20 min. Animals were injected intraperitoneally with 40 nmol/g of body weight of puromycin and euthanized by cervical dislocation immediately after exercise cessation. Analysis of gastrocnemius, plantaris, quadriceps, soleus, and tibialis anterior muscles revealed a decrease in protein translation assessed by puromycin incorporation, without significant differences among muscles or running intensities. The reduction of protein synthesis was associated with a marked inhibition of mammalian target of rapamycin complex 1 (mTORC1)-dependent phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1, a mechanism consistent with reduced translation initiation. A slight activation of AMP-activated protein kinase consecutive to the running session was measured but did not correlate with mTORC1 inhibition. More importantly, exercise resulted in a strong upregulation of regulated in development and DNA damage 1 (REDD1) protein and gene expressions, whereas transcriptional regulation of other recognized exercise-induced genes (IL-6, kruppel-like factor 15, and regulator of calcineurin 1) did not change. Consistently with the recently discovered role of REDD1 on mitochondria-associated membranes, we observed a decrease in mitochondria-endoplasmic reticulum interaction following exercise. Collectively, these data raise questions concerning the role of mitochondria-associated endoplasmic reticulum membrane disruption in the regulation of muscle proteostasis during exercise and, more generally, in cell adaptation to metabolic stress.NEW & NOTEWORTHY How muscles regulate protein synthesis to cope with the energy demand during contraction is poorly documented. Moreover, it is unknown whether protein translation is differentially affected among mouse hindlimb muscles under different physiological exercise modalities. We showed here that 45 min of running decreases puromycin incorporation similarly in 5 different mouse muscles. This decrease was associated with a strong increase in regulated in development and DNA damage 1 protein expression and a significant disruption of the mitochondria and sarcoplasmic reticulum interaction.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Biosíntesis de Proteínas , Animales , Masculino , Ratones Endogámicos C57BL , Mitocondrias Musculares/fisiología , Contracción Muscular , Retículo Sarcoplasmático/fisiología , Factores de Transcripción/metabolismo
11.
Mol Nutr Food Res ; 63(11): e1801148, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30848861

RESUMEN

SCOPE: Obese adipose tissue (AT) is infiltrated by inflammatory immune cells including IL-17A-producing-T (Th17) cells. It has been previously demonstrated that adipose-derived stem cells from obese (ob-ASCs), but not lean AT promote Th17 cells. Because n-3 PUFAs are known to inhibit obese AT inflammation, it is tested here whether they could inhibit ob-ASC-mediated IL-17A secretion. METHODS AND RESULTS: The n-3 PUFA precursor, alpha-linolenic acid (ALA), or its derivatives, eicosapentaenoic, or docosahexaenoic acid, is added to co-cultures of human ob-ASCs and mononuclear cells (MNCs). All three inhibited IL-17A, but not IL-1ß, IL-6, nor TNFα  secretion. As a control, palmitic acid (PA), a saturated fatty acid, did not inhibit IL-17A secretion. ALA also inhibited IL-17A secretion mediated by adipocytes differentiated from ob-ASCs. Toll-like-receptor 4 is shown to be involved in ob-ASC-mediated-IL-17A secretion, and to be inhibited by ALA, together with Cyclo-Oxygenase-2 and Signal-Transducer-and-Activator-of-transcription-3. In addition, ALA down-regulated Intercellular-Adhesion-Molecule-1 (ICAM-1) expression in both monocytes and ASCs, which resulted in decreased interactions between ob-ASCs and MNCs, and inhibition of IL-17A secretion. CONCLUSION: It is demonstrated herein that ALA inhibits Th17 cell promotion, through decreased ICAM-1expression in both ob-ASCs and monocytes. This novel mechanism may contribute to explain the beneficial effects of n-3 PUFA in IL-17A-related inflammatory pathologies.


Asunto(s)
Tejido Adiposo/citología , Ácidos Grasos Omega-3/farmacología , Molécula 1 de Adhesión Intercelular/genética , Interleucina-17/antagonistas & inhibidores , Obesidad/metabolismo , Células Madre/fisiología , Células Th17/efectos de los fármacos , Agregación Celular/efectos de los fármacos , Técnicas de Cocultivo , Humanos , Interleucina-17/biosíntesis , Factor de Transcripción STAT3/antagonistas & inhibidores , Células Madre/efectos de los fármacos , Células Madre/inmunología , Células Th17/inmunología , Receptor Toll-Like 4/antagonistas & inhibidores , Ácido alfa-Linolénico/farmacología
12.
BMC Biol ; 16(1): 65, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29895328

RESUMEN

BACKGROUND: Skeletal muscle atrophy is a common feature of numerous chronic pathologies and is correlated with patient mortality. The REDD1 protein is currently recognized as a negative regulator of muscle mass through inhibition of the Akt/mTORC1 signaling pathway. REDD1 expression is notably induced following glucocorticoid secretion, which is a component of energy stress responses. RESULTS: Unexpectedly, we show here that REDD1 instead limits muscle loss during energetic stresses such as hypoxia and fasting by reducing glycogen depletion and AMPK activation. Indeed, we demonstrate that REDD1 is required to decrease O2 and ATP consumption in skeletal muscle via reduction of the extent of mitochondrial-associated endoplasmic reticulum membranes (MAMs), a central hub connecting energy production by mitochondria and anabolic processes. In fact, REDD1 inhibits ATP-demanding processes such as glycogen storage and protein synthesis through disruption of the Akt/Hexokinase II and PRAS40/mTORC1 signaling pathways in MAMs. Our results uncover a new REDD1-dependent mechanism coupling mitochondrial respiration and anabolic processes during hypoxia, fasting, and exercise. CONCLUSIONS: Therefore, REDD1 is a crucial negative regulator of energy expenditure that is necessary for muscle adaptation during energetic stresses. This present study could shed new light on the role of REDD1 in several pathologies associated with energetic metabolism alteration, such as cancer, diabetes, and Parkinson's disease.


Asunto(s)
Metabolismo Energético/genética , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/fisiología , Adaptación Fisiológica/genética , Animales , Hipoxia de la Célula , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Atrofia Muscular/genética , Transducción de Señal , Factores de Transcripción/genética
13.
Cell Death Dis ; 9(6): 593, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789578

RESUMEN

Alterations in the strength and interface area of contact sites between the endoplasmic reticulum (ER) and mitochondria contribute to calcium (Ca2+) dysregulation and neuronal cell death, and have been implicated in the pathology of several neurodegenerative diseases. Weakening this physical linkage may reduce Ca2+ uptake into mitochondria, while fortifying these organelle contact sites may promote mitochondrial Ca2+ overload and cell death. Small conductance Ca2+-activated K+ (SK) channels regulate mitochondrial respiration, and their activation attenuates mitochondrial damage in paradigms of oxidative stress. In the present study, we enhanced ER-mitochondrial coupling and investigated the impact of SK channels on survival of neuronal HT22 cells in conditions of oxidative stress. Using genetically encoded linkers, we show that mitochondrial respiration and the vulnerability of neuronal cells to oxidative stress was inversely linked to the strength of ER-mitochondrial contact points and the increase in mitochondrial Ca2+ uptake. Pharmacological activation of SK channels provided protection against glutamate-induced cell death and also in conditions of increased ER-mitochondrial coupling. Together, this study revealed that SK channel activation provided persistent neuroprotection in the paradigm of glutamate-induced oxytosis even in conditions where an increase in ER-mitochondrial coupling potentiated mitochondrial Ca2+ influx and impaired mitochondrial bioenergetics.


Asunto(s)
Retículo Endoplásmico/metabolismo , Activación del Canal Iónico , Mitocondrias/metabolismo , Neuroprotección , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Animales , Calcio/metabolismo , Muerte Celular , Respiración de la Célula , Supervivencia Celular , Células HEK293 , Humanos , Ratones , Neuronas/metabolismo
14.
Diabetes ; 67(4): 636-650, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29326365

RESUMEN

Modifications of the interactions between endoplasmic reticulum (ER) and mitochondria, defined as mitochondria-associated membranes (MAMs), were recently shown to be involved in the control of hepatic insulin action and glucose homeostasis, but with conflicting results. Whereas skeletal muscle is the primary site of insulin-mediated glucose uptake and the main target for alterations in insulin-resistant states, the relevance of MAM integrity in muscle insulin resistance is unknown. Deciphering the importance of MAMs on muscle insulin signaling could help to clarify this controversy. Here, we show in skeletal muscle of different mice models of obesity and type 2 diabetes (T2D) a marked disruption of ER-mitochondria interactions as an early event preceding mitochondrial dysfunction and insulin resistance. Furthermore, in human myotubes, palmitate-induced insulin resistance is associated with a reduction of structural and functional ER-mitochondria interactions. Importantly, experimental increase of ER-mitochondria contacts in human myotubes prevents palmitate-induced alterations of insulin signaling and action, whereas disruption of MAM integrity alters the action of the hormone. Lastly, we found an association between altered insulin signaling and ER-mitochondria interactions in human myotubes from obese subjects with or without T2D compared with healthy lean subjects. Collectively, our data reveal a new role of MAM integrity in insulin action of skeletal muscle and highlight MAM disruption as an essential subcellular alteration associated with muscle insulin resistance in mice and humans. Therefore, reduced ER-mitochondria coupling could be a common alteration of several insulin-sensitive tissues playing a key role in altered glucose homeostasis in the context of obesity and T2D.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Anciano , Animales , Diabetes Mellitus Tipo 2 , Modelos Animales de Enfermedad , Femenino , Homeostasis , Humanos , Membranas Intracelulares/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Palmitatos/efectos adversos , Transducción de Señal
15.
Nat Med ; 23(8): 990-996, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28650457

RESUMEN

The endocrine-derived hormone fibroblast growth factor (FGF) 19 has recently emerged as a potential target for treating metabolic disease. Given that skeletal muscle is a key metabolic organ, we explored the role of FGF19 in that tissue. Here we report a novel function of FGF19 in regulating skeletal muscle mass through enlargement of muscle fiber size, and in protecting muscle from atrophy. Treatment with FGF19 causes skeletal muscle hypertrophy in mice, while physiological and pharmacological doses of FGF19 substantially increase the size of human myotubes in vitro. These effects were not elicited by FGF21, a closely related endocrine FGF member. Both in vitro and in vivo, FGF19 stimulates the phosphorylation of the extracellular-signal-regulated protein kinase 1/2 (ERK1/2) and the ribosomal protein S6 kinase (S6K1), an mTOR-dependent master regulator of muscle cell growth. Moreover, mice with a skeletal-muscle-specific genetic deficiency of ß-Klotho (KLB), an obligate co-receptor for FGF15/19 (refs. 2,3), were unresponsive to the hypertrophic effect of FGF19. Finally, in mice, FGF19 ameliorates skeletal muscle atrophy induced by glucocorticoid treatment or obesity, as well as sarcopenia. Taken together, these findings provide evidence that the enterokine FGF19 is a novel factor in the regulation of skeletal muscle mass, and that it has therapeutic potential for the treatment of muscle wasting.


Asunto(s)
Factores de Crecimiento de Fibroblastos/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular , Obesidad , Sarcopenia , Animales , Western Blotting , Tamaño de la Célula/efectos de los fármacos , Glucocorticoides/farmacología , Fuerza de la Mano , Humanos , Inmunohistoquímica , Inmunoprecipitación , Técnicas In Vitro , Proteínas Klotho , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Tamaño de los Órganos/efectos de los fármacos , Proteínas Recombinantes/farmacología , Transcriptoma
16.
Cell Death Discov ; 3: 17076, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29367884

RESUMEN

The crosstalk between different organelles allows for the exchange of proteins, lipids and ions. Endoplasmic reticulum (ER) and mitochondria are physically linked and signal through the mitochondria-associated membrane (MAM) to regulate the transfer of Ca2+ from ER stores into the mitochondrial matrix, thereby affecting mitochondrial function and intracellular Ca2+ homeostasis. The chaperone glucose-regulated protein 75 (GRP75) is a key protein expressed at the MAM interface which regulates ER-mitochondrial Ca2+ transfer. Previous studies revealed that modulation of GRP75 expression largely affected mitochondrial integrity and vulnerability to cell death. In the present study, we show that genetic ablation of GRP75, by weakening ER-mitochondrial junctions, provided protection against mitochondrial dysfunction and cell death in a model of glutamate-induced oxidative stress. Interestingly, GRP75 silencing attenuated both cytosolic and mitochondrial Ca2+ overload in conditions of oxidative stress, blocked the formation of reactive oxygen species and preserved mitochondrial respiration. These data revealed a major role for GRP75 in regulating mitochondrial function, Ca2+ and redox homeostasis. In line, GRP75 overexpression enhanced oxidative cell death induced by glutamate. Overall, our findings suggest weakening ER-mitochondrial connectivity by GRP75 inhibition as a novel protective approach in paradigms of oxidative stress in neuronal cells.

17.
J Mol Cell Biol ; 8(2): 129-43, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26892023

RESUMEN

Mitochondria-associated endoplasmic reticulum membranes (MAM) play a key role in mitochondrial dynamics and function and in hepatic insulin action. Whereas mitochondria are important regulators of energy metabolism, the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown. In this study, we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver. Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A (PP-PP2A) pathway, induced mitochondria fission, and impaired respiration. Blocking MAM reduction counteracted glucose-induced mitochondrial alterations. Furthermore, disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function. This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice, both characterized by chronic disruption of MAM integrity, mitochondrial fission, and altered mitochondrial respiration. These data indicate that MAM contribute to the hepatic glucose-sensing system, allowing regulation of mitochondria dynamics and function during nutritional transition. Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glucosa/farmacología , Membranas Intracelulares/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Retículo Endoplásmico/ultraestructura , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Membranas Intracelulares/efectos de los fármacos , Hígado/efectos de los fármacos , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Estado Nutricional/efectos de los fármacos , Fosfoproteínas Fosfatasas/metabolismo , Periodo Posprandial/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
18.
Diabetes ; 64(7): 2477-88, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25765019

RESUMEN

Obesity, through low-grade inflammation, can drive insulin resistance and type 2 diabetes. While infiltration of adipose tissue (AT) with mononuclear cells (MNCs) is well established in obesity, the functional consequences of these interactions are less understood. Herein, we cocultured human adipose-derived stem cells (ASCs) from obese individuals with MNCs and analyzed their reciprocal behavior. Presence of ASCs 1) enhanced interleukin (IL)-17A secretion by Th17 cells, 2) inhibited γ-interferon and tumor necrosis factor α secretion by Th1 cells, and 3) increased monocyte-mediated IL-1ß secretion. IL-17A secretion also occurred in stromal vascular fractions issued from obese but not lean individuals. Th17 polarization mostly depended on physical contacts between ASCs and MNCs-with a contribution of intracellular adhesion molecule-1-and occurred through activation of the inflammasome and phosphatidylinositol 3-kinase pathways. ASCs favored STAT3 over STAT5 transcription factor binding on STAT binding sites within the IL-17A/F gene locus. Finally, conditioned media from activated ASC-MNC cocultures inhibited adipocyte differentiation mRNA markers and impaired insulin-mediated Akt phosphorylation and lipolysis inhibition. In conclusion, we report that obese- but not lean-derived ASCs induce Th17 promotion and monocyte activation. This proinflammatory environment, in turn, inhibits adipogenesis and adipocyte insulin response. The demonstration of an ASC-Th17-monocyte cell axis reveals a novel proinflammatory process taking place in AT during obesity and defines novel putative therapeutic targets.


Asunto(s)
Adipocitos/fisiología , Tejido Adiposo/citología , Inflamación/etiología , Insulina/farmacología , Monocitos/fisiología , Obesidad/complicaciones , Células Madre/fisiología , Células TH1/inmunología , Células Th17/inmunología , Animales , Comunicación Celular , Interleucina-17/biosíntesis , Interleucina-17/genética , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/inmunología , Fosfatidilinositol 3-Quinasas/fisiología , Factores de Transcripción STAT/fisiología
19.
Diabetes ; 64(6): 2254-64, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25552598

RESUMEN

Imeglimin is the first in a new class of oral glucose-lowering agents currently in phase 2b development. Although imeglimin improves insulin sensitivity in humans, the molecular mechanisms are unknown. This study used a model of 16-week high-fat, high-sucrose diet (HFHSD) mice to characterize its antidiabetic effects. Six-week imeglimin treatment significantly decreased glycemia, restored normal glucose tolerance, and improved insulin sensitivity without modifying organs, body weights, and food intake. This was associated with an increase in insulin-stimulated protein kinase B phosphorylation in the liver and muscle. In liver mitochondria, imeglimin redirects substrate flows in favor of complex II, as illustrated by increased respiration with succinate and by the restoration of respiration with glutamate/malate back to control levels. In addition, imeglimin inhibits complex I and restores complex III activities, suggesting an increase in fatty acid oxidation, which is supported by an increase in hepatic 3-hydroxyacetyl-CoA dehydrogenase activity and acylcarnitine profile and the reduction of liver steatosis. Imeglimin also reduces reactive oxygen species production and increases mitochondrial DNA. Finally, imeglimin effects on mitochondrial phospholipid composition could participate in the benefit of imeglimin on mitochondrial function. In conclusion, imeglimin normalizes glucose tolerance and insulin sensitivity by preserving mitochondrial function from oxidative stress and favoring lipid oxidation in liver of HFHSD mice.


Asunto(s)
Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Triazinas/uso terapéutico , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL
20.
Biomed Res Int ; 2014: 518787, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25243147

RESUMEN

Focused ultrasound involving inertial cavitation has been shown to be an efficient method to induce thrombolysis without any pharmacological agent. However, further investigation of the mechanisms involved and further optimization of the process are still required. The present work aims at studying the relevance of a bifrequency excitation compared to a classical monofrequency excitation to achieve thrombolysis without any pharmacological agent. In vitro human blood clots were placed at the focus of a piezoelectric transducer. Efficiency of the thrombolysis was assessed by weighing each clot before and after sonication. The efficiencies of mono- (550 kHz) and bifrequency (535 and 565 kHz) excitations were compared for peak power ranging from 70 W to 220 W. The thrombolysis efficiency appears to be correlated to the inertial cavitation activity quantified by passive acoustic listening. In the conditions of the experiment, the power needed to achieve 80% of thrombolysis with a monofrequency excitation is reduced by the half with a bifrequency excitation. The thermal effects of bifrequency and monofrequency excitations, studied using MR thermometry measurements in turkey muscle samples where no cavitation occurred, did not show any difference between both types of excitations when using the same power level.


Asunto(s)
Hipertermia Inducida/métodos , Sonicación/métodos , Terapia Trombolítica/métodos , Trombosis/terapia , Humanos , Hipertermia Inducida/instrumentación , Modelos Biológicos , Sonicación/instrumentación , Termometría , Terapia Trombolítica/instrumentación , Trombosis/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...