Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Struct Biol ; 171(1): 1-10, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20350602

RESUMEN

Arthropod hemocyanins (Hcs) are a family of large, high molecular mass, extracellular oxygen transport proteins. They form oligomeric quaternary structures based on different arrangements of a basic 6×75 kDa hexameric unit. Their complex quaternary structures present binding sites for allosteric effectors and regulate the oxygen binding process in a cooperative manner. In order to describe the functional regulation of arthropod Hcs, a detailed description of their quaternary structure is necessary. We have utilized small angle X-ray scattering to characterize the structure of three arthropod Hcs in unperturbed conditions. Two different levels of complexity are evaluated: for the 2×6-meric case, we analyzed the Hcs of the portunid crab Carcinus aestuarii and stomatopod Squilla mantis, while in the case of 4×6-meric structures, we studied the Hc of the thalassinid shrimp Upogebia pusilla. While C. aestuarii Hc presented a structure comparable to other 2×6-meric crustacean Hcs, S. mantis Hc shows a peculiar and quite unique arrangement of its building blocks, resembling a substructure of giant Hcs found among cheliceratans. For U. pusilla, the arrangement of its subunits is described as tetrahedral, in contrast to the more common square planar 4×6-meric structure found in other arthropod Hcs.


Asunto(s)
Hemocianinas/química , Animales , Sitios de Unión , Crustáceos/metabolismo , Hemocianinas/metabolismo , Modelos Moleculares , Oxígeno/metabolismo , Estructura Cuaternaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
3.
Nucleic Acids Res ; 36(17): 5635-44, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18772225

RESUMEN

Human DNA topoisomerase I (hTop1p) catalyzes the relaxation of supercoiled DNA and constitutes the cellular target of the antitumor drug camptothecin (CPT). The X-ray crystal structure of the enzyme covalently joined to DNA and bound to the CPT analog Topotecan suggests that there are two classes of mutations that can produce a CPT-resistant enzyme. The first class includes changes in residues that directly interact with the drug, whereas a second class alters interactions with the DNA and thereby destabilizes the drug binding site. The Thr729Ala, that is part of a hydrophobic pocket in the enzyme C-terminal domain, belongs to a third group of mutations that confer CPT resistance, but do not interact directly with the drug or the DNA. To understand the contribution of this residue in drug resistance, we have studied the effect on hTop1p catalysis and CPT sensitivity of four different substitutions in the Thr729 position (Thr729Ala, Thr729Glu, Thr729Lys and Thr729Pro). Tht729Glu and Thr729Lys mutants show severe CPT resistance and furthermore, Thr729Glu shows a remarkable defect in DNA binding. We postulate that the maintenance of the hydrophobic pocket integrity, where Thr729 is positioned, is crucial for drug sensitivity and DNA binding.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Camptotecina/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores de Topoisomerasa I , Sustitución de Aminoácidos , Catálisis , ADN/metabolismo , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Resistencia a Antineoplásicos , Humanos , Mutación , Unión Proteica , Saccharomyces cerevisiae/genética , Treonina/genética
4.
Nucleic Acids Res ; 36(17): 5645-51, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18765473

RESUMEN

The role of Thr729 in modulating the enzymatic function of human topoisomerase I has been characterized by molecular dynamics (MD) simulation. In detail, the structural-dynamical behaviour of the Thr729Lys and the Thr729Pro mutants have been characterized because of their in vivo and in vitro functional properties evidenced in the accompanying paper. Both mutants can bind to the DNA substrate and are enzymatically active, but while Thr729Lys is resistant even at high concentration of the camptothecin (CPT) anti-cancer drug, Thr729Pro shows only a mild reduction in drug sensitivity and in DNA binding. MD simulations show that the Thr729Lys mutation provokes a structural perturbation of the CPT-binding pocket. On the other hand, the Thr729Pro mutant maintains the wild-type structural scaffold, only increasing its rigidity. The simulations also show the complete abolishment, in the Thr729Lys mutant, of the protein communications between the C-terminal domain (where the active Tyr723 is located) and the linker domain, that plays an essential role in the control of the DNA rotation, thus explaining the distributive mode of action displayed by this mutant.


Asunto(s)
ADN-Topoisomerasas de Tipo I/química , Treonina/química , Sustitución de Aminoácidos , Antineoplásicos Fitogénicos/farmacología , Camptotecina/farmacología , Simulación por Computador , ADN/química , ADN-Topoisomerasas de Tipo I/genética , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Humanos , Lisina/genética , Modelos Moleculares , Mutación , Prolina/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Treonina/genética , Inhibidores de Topoisomerasa I
5.
J Biol Chem ; 283(41): 27767-27775, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18693244

RESUMEN

In eukaryotes, DNA topoisomerase I (Top1) catalyzes the relaxation of supercoiled DNA by a conserved mechanism of transient DNA strand breakage, rotation, and religation. The unusual architecture of the monomeric human enzyme comprises a conserved protein clamp, which is tightly wrapped about duplex DNA, and an extended coiled-coil linker domain that appropriately positions the C-terminal active site tyrosine domain against the Top1 core to form the catalytic pocket. A structurally undefined N-terminal domain, dispensable for enzyme activity, mediates protein-protein interactions. Previously, reversible disulfide bonds were designed to assess whether locking the Top1 clamp around duplex DNA would restrict DNA strand rotation within the covalent Top1-DNA intermediate. The active site proximal disulfide bond in full-length Top1-clamp(534) restricted DNA rotation (Woo, M. H., Losasso, C., Guo, H., Pattarello, L., Benedetti, P., and Bjornsti, M. A. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 13767-13772), whereas the more distal disulfide bond of the N-terminally truncated Topo70-clamp(499) did not (Carey, J. F., Schultz, S. J., Sisson, L., Fazzio, T. G., and Champoux, J. J. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 5640-5645). To assess the contribution of the N-terminal domain to the dynamics of Top1 clamping of DNA, the same disulfide bonds were engineered into full-length Top1 and truncated Topo70, and the activities of these proteins were assessed in vitro and in yeast. Here we report that the N terminus impacts the opening and closing of the Top1 protein clamp. We also show that the architecture of yeast and human Top1 is conserved in so far as cysteine substitutions of the corresponding residues suffice to lock the Top1-clamp. However, the composition of the divergent N-terminal/linker domains impacts Top1-clamp activity and stability in vivo.


Asunto(s)
Roturas del ADN , ADN-Topoisomerasas de Tipo I/química , Disulfuros/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Disulfuros/metabolismo , Humanos , Estructura Terciaria de Proteína/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Ital J Biochem ; 56(2): 91-102, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17722649

RESUMEN

Human DNA Topoisomerase I is a 765aa monomeric enzyme composed of four domains: the N-terminal domain, highly charged and responsible for several protein-protein interactions, the core domain that embraces the DNA during catalysis, the highly charged linker domain and the C-teminal domain containing the active site. The enzyme promotes the relaxation of supercoiled DNA by nicking and rejoining one of the strands of the DNA. Its activity is critical for many biological processes including DNA replication, transcription, and recombination. The aim of this review is to analyze the enzyme activity in terms of structure-function relationship.


Asunto(s)
Replicación del ADN/fisiología , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Superhelicoidal/metabolismo , Recombinación Genética/fisiología , Transcripción Genética/fisiología , Catálisis , ADN-Topoisomerasas de Tipo I/química , ADN Superhelicoidal/química , Humanos , Estructura Terciaria de Proteína/fisiología , Relación Estructura-Actividad
7.
Nat Struct Mol Biol ; 14(7): 611-9, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17603498

RESUMEN

Type II topoisomerases help disentangle chromosomes to facilitate cell division. To advance understanding of the structure and dynamics of these essential enzymes, we have determined the crystal structure of an archaeal type IIB topoisomerase, topo VI, at 4.0-A resolution. The 220-kDa heterotetramer adopts a 'twin-gate' architecture, in which a pair of ATPase domains at one end of the enzyme is poised to coordinate DNA movements into the enzyme and through a set of DNA-cleaving domains at the other end. Small-angle X-ray scattering studies show that nucleotide binding elicits a major structural reorganization that is propagated to the enzyme's DNA-cleavage center, explaining how ATP is coupled to DNA capture and strand scission. These data afford important insights into the mechanisms of topo VI and related proteins, including type IIA topoisomerases and the Spo11 meiotic recombination endonuclease.


Asunto(s)
Adenosina Trifosfato/química , ADN-Topoisomerasas de Tipo II/química , Methanosarcina/enzimología , Sulfolobus/enzimología , Proteínas Arqueales , Cristalografía por Rayos X , ADN/química , División del ADN , ADN-Topoisomerasas de Tipo II/genética , Holoenzimas/química , Modelos Moleculares , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Soluciones/química
8.
J Biol Chem ; 282(13): 9855-9864, 2007 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-17276985

RESUMEN

Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology via the formation of a covalent enzyme-DNA intermediate, which is reversibly stabilized by the anticancer agent camptothecin (CPT). Crystallographic studies of the 70-kDa C terminus of human Top1p bound to duplex DNA describe a monomeric protein clamp circumscribing the DNA helix. The structures, which lack the N-terminal domain, comprise the conserved clamp, an extended linker domain, and the conserved C-terminal active site Tyr domain. CPT bound to the covalent Top1p-DNA complex limits linker flexibility, allowing structural determination of this domain. We previously reported that mutation of Ala(653) to Pro in the linker increases the rate of enzyme-catalyzed DNA religation, thereby rendering Top1A653Pp resistant to CPT (Fiorani, P., Bruselles, A., Falconi, M., Chillemi, G., Desideri, A., and Benedetti P. (2003) J. Biol. Chem. 278, 43268-43275). Molecular dynamics studies suggested mutation-induced increases in linker flexibility alter Top1p catalyzed DNA religation. To address the functional consequences of linker flexibility on enzyme catalysis and drug sensitivity, we investigated the interactions of the A653P linker mutation with a self-poisoning T718A mutation within the active site of Top1p. The A653P mutation suppressed the lethal phenotype of Top1T718Ap in yeast, yet did not restore enzyme sensitivity to CPT. However, the specific activity of the double mutant was decreased in vivo and in vitro, consistent with a decrease in DNA binding. These findings support a model where changes in the flexibility or orientation of the linker alter the geometry of the active site and thereby the kinetics of DNA cleavage/religation catalyzed by Top1p.


Asunto(s)
Sustitución de Aminoácidos/genética , Apoptosis/fisiología , ADN-Topoisomerasas de Tipo I/fisiología , Mutación , Inhibidores de Topoisomerasa I , Sustitución de Aminoácidos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Secuencia de Bases , Camptotecina/farmacología , Muerte Celular , ADN-Topoisomerasas de Tipo I/genética , Farmacorresistencia Fúngica/genética , Datos de Secuencia Molecular , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología
9.
Nucleic Acids Res ; 33(10): 3339-50, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15944452

RESUMEN

The functional and dynamical properties of the human topoisomerase I Thr718Ala mutant have been compared to that of the wild-type enzyme using functional assays and molecular dynamics (MD) simulations. At physiological ionic strength, the cleavage and religation rates, evaluated on oligonucleotides containing the preferred topoisomerase I DNA sequence, are almost identical for the wild-type and the mutated enzymes, as is the cleavage/religation equilibrium. On the other hand, the Thr718Ala mutant shows a decreased efficiency in a DNA plasmid relaxation assay. The MD simulation, carried out on the enzyme complexed with its preferred DNA substrate, indicates that the mutant has a different dynamic behavior compared to the wild-type enzyme. Interestingly, no changes are observed in the proximity of the mutation site, whilst a different flexibility is detected in regions contacting the DNA scissile strand, such as the linker and the V-shaped alpha helices. Taken together, the functional and simulation results indicate a direct communication between the mutation site and regions located relatively far away, such as the linker domain, that with their altered flexibility confer a reduced DNA relaxation efficiency. These results provide evidence that the comprehension of the topoisomerase I dynamical properties are an important element in the understanding of its complex catalytic cycle.


Asunto(s)
ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/genética , ADN/química , Alanina/genética , Sustitución de Aminoácidos , Simulación por Computador , ADN/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Humanos , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Mutación , Análisis de Componente Principal , Treonina/genética
10.
J Ind Microbiol Biotechnol ; 32(11-12): 527-33, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15918023

RESUMEN

Pteris vittata L. is a staggeringly efficient arsenic hyperaccumulator that has been shown to be capable of accumulating up to 23,000 microg arsenic g(-1), and thus represents a species that may fully exploit the adaptive potential of plants to toxic metals. However, the molecular mechanisms of adaptation to toxic metal tolerance and hyperaccumulation remain unknown, and P. vittata genes related to metal detoxification have not yet been identified. Here, we report the isolation of a full-length cDNA sequence encoding a phytochelatin synthase (PCS) from P. vittata. The cDNA, designated PvPCS1, predicts a protein of 512 amino acids with a molecular weight of 56.9 kDa. Homology analysis of the PvPCS1 nucleotide sequence revealed that it has low identity with most known plant PCS genes except AyPCS1, and the homology is largely confined to two highly conserved regions near the 5'-end, where the similarity is as high as 85-95%. The amino acid sequence of PvPCS1 contains two Cys-Cys motifs and 12 single Cys, only 4 of which (Cys-56, Cys-90/91, and Cys-109) in the N-terminal half of the protein are conserved in other known PCS polypeptides. When expressed in Saccharomyces cerevisae, PvPCS1 mediated increased Cd tolerance. Cloning of the PCS gene from an arsenic hyperaccumulator may provide information that will help further our understanding of the genetic basis underlying toxic metal tolerance and hyperaccumulation.


Asunto(s)
Aminoaciltransferasas/genética , Clonación Molecular , Farmacorresistencia Fúngica , Pteris/enzimología , Aminoaciltransferasas/química , Aminoaciltransferasas/metabolismo , Arseniatos/metabolismo , Arseniatos/farmacología , Secuencia de Bases , Cadmio/farmacología , ADN Complementario , Glutatión/metabolismo , Datos de Secuencia Molecular , Fitoquelatinas , Pteris/efectos de los fármacos , Pteris/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN
11.
J Biol Chem ; 279(20): 21271-81, 2004 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-14990574

RESUMEN

DNA topoisomerase I (Top1p) catalyzes changes in DNA topology via the formation of an enzyme-DNA covalent complex that is reversibly stabilized by the antitumor drug, camptothecin (CPT). During S-phase, collisions with replication forks convert these complexes into cytotoxic DNA lesions that trigger cell cycle arrest and cell death. To investigate cellular responses to CPT-induced DNA damage, a yeast genetic screen identified conditional tah mutants with enhanced sensitivity to self-poisoning DNA topoisomerase I mutant (Top1T722Ap), which mimics the action of CPT. Mutant alleles of three genes, DOA4, SLA1 and SLA2, were recovered. A nonsense mutation in DOA4 eliminated the catalytic residues of the Doa4p deubiquitinating enzyme, yet retained the rhodanase domain. At 36 degrees C, this doa4-10 mutant exhibited increased sensitivity to CPT, osmotic stress, and hydroxyurea, and a reversible petite phenotype. However, the accumulation of pre-vacuolar class E vesicles that was observed in doa4Delta cells was not detected in the doa4-10 mutant. Mutations in SLA1 or SLA2, which alter actin cytoskeleton architecture, induced a conditional synthetic lethal phenotype in combination with doa4-10 in the absence of DNA damage. Here actin cytoskeleton defects coincided with the enhanced fragility of large-budded cells. In contrast, the enhanced sensitivity of doa4-10 mutant cells to Top1T722Ap was unrelated to alterations in endocytosis and was selectively suppressed by increased dosage of the ribonucleotide reductase inhibitor Sml1p. Additional studies suggest a role for Doa4p in the Rad9p checkpoint response to Top1p poisons. These findings indicate a functional link between ubiquitin-mediated proteolysis and cellular resistance to CPT-induced DNA damage.


Asunto(s)
Endopeptidasas/metabolismo , Inhibidores Enzimáticos/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Inhibidores de Topoisomerasa I , Proteínas Portadoras/genética , Ciclo Celular/fisiología , Proteínas del Citoesqueleto , Endopeptidasas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte , Genotipo , Hidroxiurea/farmacología , Mutagénesis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina Tiolesterasa
12.
Proc Natl Acad Sci U S A ; 100(24): 13767-72, 2003 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-14585933

RESUMEN

Eukaryotic DNA topoisomerase I (Top1) is a monomeric protein clamp that functions in DNA replication, transcription, and recombination. Opposable "lip" domains form a salt bridge to complete Top1 protein clamping of duplex DNA. Changes in DNA topology are catalyzed by the formation of a transient phosphotyrosyl linkage between the active-site Tyr-723 and a single DNA strand. Substantial protein domain movements are required for DNA binding, whereas the tight packing of DNA within the covalent Top1-DNA complex necessitates some DNA distortion to allow rotation. To investigate the effects of Top1-clamp closure on enzyme catalysis, molecular modeling was used to design a disulfide bond between residues Gly-365 and Ser-534, to crosslink protein loops more proximal to the active-site tyrosine than the protein loops held by the Lys-369-Glu-497 salt bridge. In reducing environments, Top1-Clamp was catalytically active. However, contrary to crosslinking the salt-bridge loops [Carey, J. F., Schultz, S. J., Sission, L., Fazzio, T. G. & Champoux, J. J. (2003) Proc. Natl. Acad. Sci. USA 100, 5640-5645], crosslinking the active-site proximal loops inhibited DNA rotation. Apparently, subtle alterations in Top1 clamp flexibility impact enzyme catalysis in vitro. Yet, the catalytically active Top1-Clamp was cytotoxic, even in the reducing environment of yeast cells. Remarkably, a shift in redox potential in glr1Delta cells converted the catalytically inactive Top1Y723F mutant clamp into a cellular toxin, which failed to induce an S-phase terminal phenotype. This cytotoxic mechanism is distinct from that of camptothecin chemotherapeutics, which stabilize covalent Top1-DNA complexes, and it suggests that the development of novel therapeutics that promote Top1-clamp closure is possible.


Asunto(s)
ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , Camptotecina/farmacología , Dominio Catalítico , ADN-Topoisomerasas de Tipo I/genética , Disulfuros/química , Sustancias Macromoleculares , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Conformación Proteica , Rotación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
J Biol Chem ; 278(47): 46741-9, 2003 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-12933819

RESUMEN

There is evidence for strong functional antagonistic interactions between adenosine A2A receptors (A2ARs) and dopamine D2 receptors (D2Rs). Although a close physical interaction between both receptors has recently been shown using co-immunoprecipitation and co-localization assays, the existence of a A2AR-D2R protein-protein interaction still had to be demonstrated in intact living cells. In the present work, fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) techniques were used to confirm the occurrence of A2AR-D2R interactions in co-transfected cells. The degree of A2AR-D2R heteromerization, measured by BRET, did not vary after receptor activation with selective agonists, alone or in combination. BRET competition experiments were performed using a chimeric D2R-D1R in which helices 5 and 6, the third intracellular loop (I3), and the third extracellular loop (E3) of the D2R were replaced by those of the dopamine D1 receptor (D1R). Although the wild type D2R was able to decrease the BRET signal, the chimera failed to achieve any effect. This suggests that the helix 5-I3-helix 6-E3 portion of D2R holds the site(s) for interaction with A2AR. Modeling of A2AR and D2R using a modified rhodopsin template followed by molecular dynamics and docking simulations gave essentially two different possible modes of interaction between D2R and A2AR. In the most probable one, helix 5 and/or helix 6 and the N-terminal portion of I3 from D2R approached helix 4 and the C-terminal portion of the C-tail from the A2AR, respectively.


Asunto(s)
Transferencia de Energía , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo , Sitios de Unión , Línea Celular , Simulación por Computador , Dimerización , Fluorescencia , Humanos , Mediciones Luminiscentes , Modelos Moleculares , Unión Proteica , Proteínas Recombinantes de Fusión , Transfección
14.
J Biol Chem ; 278(44): 43268-75, 2003 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-12904303

RESUMEN

DNA topoisomerase I relaxes supercoiled DNA by the formation of a covalent intermediate in which the active-site tyrosine is transiently bound to the cleaved DNA strand. The antineoplastic agent camptothecin specifically targets DNA topoisomerase I, and several mutations have been isolated that render the enzyme camptothecin-resistant. The catalytic and structural dynamical properties of a human DNA topoisomerase I mutant in which Ala-653 in the linker domain was mutated into Pro have been investigated. The mutant is resistant to camptothecin and in the absence of the drug displays a cleavage-religation equilibrium strongly shifted toward religation. The shift is mainly because of an increase in the religation rate relative to the wild type enzyme, indicating that the unperturbed linker is involved in slowing religation. Molecular dynamics simulation indicates that the Ala to Pro mutation increases the linker flexibility allowing it to sample a wider conformational space. The increase in religation rate of the mutant, explained by means of the enhanced linker flexibility, provides an explanation for the mutant camptothecin resistance.


Asunto(s)
Camptotecina/farmacología , ADN-Topoisomerasas de Tipo I/química , Resistencia a Medicamentos , Inhibidores Enzimáticos/farmacología , Mutación , Alanina/química , Sitios de Unión , Catálisis , Supervivencia Celular , ADN/metabolismo , Humanos , Iones , Cinética , Modelos Moleculares , Oligonucleótidos/química , Plásmidos/metabolismo , Prolina/química , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Factores de Tiempo , Tirosina/química
15.
Nucleic Acids Res ; 31(5): 1525-35, 2003 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-12595561

RESUMEN

The collective motions of the core and C-terminal domains of human topoisomerase I (topo I) have been analysed by molecular dynamics simulation of the protein in covalent complex with a 22 bp DNA duplex. The analysis evidenced a great number of correlated movements of core subdomain I and II residues, and a central role for helix 5 in the protein-DNA communication, in particular with the scissile strand downstream of the cleavage site. The flow of information between these core subdomains and DNA suggests that subdomains I and II play an essential role in the DNA relaxation process. In core subdomain III the majority of DNA contacting residues do not communicate with protein regions far from DNA, suggesting that they have a structural role. However, selected core subdomain III residues, involved in the orientation of the active site region, show correlated movements with residues distant from DNA, indicating that the information concerning the catalytic event is also transmitted. The flexibility of two loops formed by residues 519-520 and 580-584 seems indispensable to the dynamic participation of core subdomain III to the DNA cleavage and religation steps. The motion of specific residues has also been found to explain the effect of single point mutations that make topo I resistant to the anticancer drug camptothecin.


Asunto(s)
ADN-Topoisomerasas de Tipo I/química , ADN/química , Conformación Proteica , Sitios de Unión , Simulación por Computador , ADN/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...