Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Cell Res ; 317(1): 51-69, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20850431

RESUMEN

Juvenile neuronal ceroid lipofuscinosis (JNCL) is a pediatric lysosomal storage disorder characterized by accumulation of autofluorescent storage material and neurodegeneration, which result from mutations in CLN3. The function of CLN3, a lysosomal membrane protein, is currently unknown. We report that CLN3 interacts with cytoskeleton-associated nonmuscle myosin-IIB. Both CLN3 and myosin-IIB are ubiquitously expressed, yet mutations in either produce dramatic consequences in the CNS such as neurodegeneration in JNCL patients and Cln3(-/-) mouse models, or developmental deficiencies in Myh10(-/-) mice, respectively. A scratch assay revealed a migration defect associated with Cln3(-/-) cells. Inhibition of nonmuscle myosin-II with blebbistatin in WT cells resulted in a phenotype that mimics the Cln3(-/-) migration defect. Moreover, inhibiting lysosome function by treating cells with chloroquine exacerbated the migration defect in Cln3(-/-). Cln3(-/-) cells traversing a transwell filter under gradient trophic factor conditions displayed altered migration, further linking lysosomal function and cell migration. The myosin-IIB distribution in Cln3(-/-) cells is elongated, indicating a cytoskeleton defect caused by the loss of CLN3. In summary, cells lacking CLN3 have defects that suggest altered myosin-IIB activity, supporting a functional and physical interaction between CLN3 and myosin-IIB. We propose that the migration defect in Cln3(-/-) results, in part, from the loss of the CLN3-myosin-IIB interaction.


Asunto(s)
Movimiento Celular/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Animales , Ensayos de Migración Celular , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Fibroblastos/metabolismo , Fibroblastos/fisiología , Ratones , Ratones Noqueados , Cadenas Pesadas de Miosina/genética , Células 3T3 NIH , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Miosina Tipo IIB no Muscular/genética , Unión Proteica/genética , Unión Proteica/fisiología
2.
Hum Mol Genet ; 19(5): 931-42, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20015955

RESUMEN

Juvenile Batten disease is an autosomal recessive pediatric neurodegenerative disorder caused by mutations in the CLN3 gene. The CLN3 protein primarily resides in the lysosomal membrane, but its function is unknown. We demonstrate that CLN3 interacts with SBDS, the protein mutated in Shwachman-Bodian-Diamond syndrome patients. We demonstrate that this protein-protein interaction is conserved between Btn1p and Sdo1p, the respective yeast Saccharomyces cerevisiae orthologs of CLN3 and SBDS. It was previously shown that deletion of BTN1 results in alterations in vacuolar pH and vacuolar (H(+))-ATPase (V-ATPase)-dependent H(+) transport and ATP hydrolysis. Here, we report that an SDO1 deletion strain has decreased vacuolar pH and V-ATPase-dependent H(+) transport and ATP hydrolysis. These alterations result from decreased V-ATPase subunit expression. Overexpression of BTN1 or the presence of ionophore carbonyl cyanide m-chlorophenil hydrazone (CCCP) causes decreased growth in yeast lacking SDO1. In fact, in normal cells, overexpression of BTN1 mirrors the effect of CCCP, with both resulting in increased vacuolar pH due to alterations in the coupling of V-ATPase-dependent H(+) transport and ATP hydrolysis. Thus, we propose that Sdo1p and SBDS work to regulate Btn1p and CLN3, respectively. This report highlights a novel mechanism for controlling vacuole/lysosome homeostasis by the ribosome maturation pathway that may contribute to the cellular abnormalities associated with juvenile Batten disease and Shwachman-Bodian-Diamond syndrome.


Asunto(s)
Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Células 3T3 NIH , Fenotipo , Proteínas/genética , Proteínas/metabolismo , Transfección
3.
Brain Res ; 1266: 93-107, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19230832

RESUMEN

Juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease, is a neurodegenerative disease resulting from a mutation in CLN3, which presents clinically with visual deterioration, seizures, motor impairments, cognitive decline, hallucinations, loss of circadian rhythm, and premature death in the late-twenties to early-thirties. Using a Cln3 null (Cln3(-/-)) mouse, we report here several deficits in the cerebellum in the absence of Cln3, including cell loss and early onset motor deficits. Surprisingly, early onset glial activation and selective neuronal loss within the mature fastigial pathway of the deep cerebellar nuclei (DCN), a region critical for balance and coordination, are seen in many regions of the Cln3(-/-) cerebellum. Additionally, there is a loss of Purkinje cells (PC) in regions of robust Bergmann glia activation in Cln3(-/-) mice and human JNCL post-mortem cerebellum. Moreover, the Cln3(-/-) cerebellum had a mis-regulation in granule cell proliferation and maintenance of PC dendritic arborization and spine density. Overall, this study defines a novel multi-faceted, early-onset cerebellar disruption in the Cln3 null brain, including glial activation, cell loss, and aberrant cell proliferation and differentiation. These early alterations in the maturation of the cerebellum could underlie some of the motor deficits and pathological changes seen in JNCL patients.


Asunto(s)
Cerebelo/patología , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Análisis de Varianza , Animales , Muerte Celular , Proliferación Celular , Cerebelo/crecimiento & desarrollo , Cerebelo/fisiopatología , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Inmunohistoquímica , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Chaperonas Moleculares/genética , Actividad Motora , Neurogénesis , Neuroglía/fisiología , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Lipofuscinosis Ceroideas Neuronales/psicología , Tamaño de los Órganos , Equilibrio Postural , Células de Purkinje/fisiología
4.
J Neurosci Res ; 87(9): 2157-66, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19235893

RESUMEN

Mutations in CLN6 cause variant late-onset neuronal ceroid lipofuscinosis (vLINCL), a childhood neurodegenerative disorder resulting from aberrant neuronal cell loss and pathological accumulation of lysosomal autofluorescent storage material in the central nervous system. The direct function of the endoplasmic reticulum-resident protein CLN6 and how dysfunction of this protein results in vLINCL are unknown. We report that CLN6 interacts with collapsin response mediator protein-2 (CRMP-2). To further understand the significance and possible contribution to vLINCL of the CLN6-CRMP-2 interaction, we utilized the nclf mouse, which harbors mutations in CLN6. Significantly, CRMP-2 protein level was found to be reduced in the nclf mouse brain, particularly in the thalamus. Because CRMP-2 functions in growth cone collapse and is an effector protein downstream of Sema3A signaling, this pathway was examined via a dorsal root ganglion (DRG) repulsion assay. However, there were no defects in the repulsion of DRGs derived from nclf mice, indicating that the loss of CLN6 does not affect Sema3A signaling. CRMP-2 has also been implicated in controlling axon number and outgrowth, as observed in cultured hippocampal neurons. Therefore, we explored the formation and maturation of hippocampal neurons derived from nclf mice in a glial coculture system. The maturation of these neurons was reduced; by day in vitro (DIV) 8, more than 50% of nclf-derived hippocampal neurons had died. Additionally, beginning around DIV4, nclf neurons were less mature than their WT counterparts, presumably because of an inability to form mature synaptic connections. We concluded that alterations in neurite maturation resulting from a loss of CLN6-CRMP-2 interaction may contribute to neuronal dysfunction and pathology in vLINCL.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/genética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Diferenciación Celular/genética , Técnicas de Cocultivo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Conos de Crecimiento/metabolismo , Conos de Crecimiento/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Células 3T3 NIH , Degeneración Nerviosa/fisiopatología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Neurogénesis/genética , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Sinapsis/metabolismo , Sinapsis/patología
5.
Brain Res ; 1162: 98-112, 2007 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-17617387

RESUMEN

Batten disease, or juvenile neuronal ceroid lipofuscinosis (JNCL), results from mutations in the CLN3 gene. This disorder presents clinically around the age of 5 years with visual deficits progressing to include seizures, cognitive impairment, motor deterioration, hallucinations, and premature death by the third to fourth decade of life. The motor deficits include coordination and gait abnormalities, myoclonic jerks, inability to initiate movements, and spasticity. Previous work from our laboratory has identified an early reduction in catechol-O-methyltransferase (COMT), an enzyme responsible for the efficient degradation of dopamine. Alterations in the kinetics of dopamine metabolism could cause the accumulation of undegraded or unsequestered dopamine leading to the formation of toxic dopamine intermediates. We report an imbalance in the catabolism of dopamine in 3 month Cln3(-/-) mice persisting through 9 months of age that may be causal to oxidative damage within the striatum at 9 months of age. Combined with the previously reported inflammatory changes and loss of post-synaptic D1alpha receptors, this could facilitate cell loss in striatal projection regions and underlie a general locomotion deficit that becomes apparent at 12 months of age in Cln3(-/-) mice. This study provides evidence for early changes in the kinetics of COMT in the Cln3(-/-) mouse striatum, affecting the turnover of dopamine, likely leading to neuron loss and motor deficits. These data provide novel insights into the basis of motor deficits in JNCL and how alterations in dopamine catabolism may result in oxidative damage and localized neuronal loss in this disorder.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Neuronas/patología , Sustancia Negra/patología , Factores de Edad , Análisis de Varianza , Animales , Conducta Animal/fisiología , Catecol O-Metiltransferasa/metabolismo , Muerte Celular/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Glicoproteínas de Membrana/deficiencia , Ratones , Ratones Noqueados , Modelos Biológicos , Chaperonas Moleculares , Actividad Motora/genética , Destreza Motora/fisiología , Lipofuscinosis Ceroideas Neuronales/genética
6.
J Neurosci Res ; 85(13): 2882-91, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17638298

RESUMEN

Oxidative damage is a known contributor to the pathogenesis of neurodegenerative diseases. Juvenile Batten disease is a progressive neurodegenerative disorder of childhood that results from mutation in Cln3. We have performed an initial characterization of the oxidative burden throughout the CNS in a Cln3(-/-) mouse model for juvenile Batten disease. A survey of multiple regions of the Cln3(-/-) mouse brain revealed a specific reduction of total glutathione, a tripeptide antioxidant molecule, in the cerebellum. Further analysis revealed an increase in protein oxidation not only in the cerebellum but also in the thalamus and primary motor cortex. Additionally, the thalamus was found to have an increase in the amount of a potent antioxidant enzyme, manganese superoxide dismutase (MnSOD), which may be in response to an increase in deleterious superoxide radicals. Colocalization studies indicate that microglia are localized directly adjacent to neurons expressing MnSOD, indicating that microglial activation may be related to the observed oxidative damage. This study helps to provide an initial measure of regions within the CNS of Cln3(-/-) mice that are specifically affected by the loss of CLN3 function and may serve to identify at the neuroanatomical level, the sequence of events that plays a role in the pathogenesis and clinical course of juvenile Batten disease.


Asunto(s)
Sistema Nervioso Central/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Oxidación-Reducción , Análisis de Varianza , Animales , Antígenos de Diferenciación/metabolismo , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica/genética , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glicoproteínas de Membrana/deficiencia , Ratones , Ratones Noqueados , Chaperonas Moleculares , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Peroxirredoxinas/metabolismo , Carbonilación Proteica/fisiología , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa GPX1
7.
Neurobiol Dis ; 25(2): 239-51, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17070688

RESUMEN

Patients and a mouse model of Batten disease, the juvenile form of neuronal ceroid lipofuscinosis (JNCL), raise autoantibodies against GAD65 and other brain-directed antigens. Here we investigate the adaptive component of the neuroimmune response. Cln3(-/-) mice have autoantibodies to GAD65 in their cerebrospinal fluid and elevated levels of brain bound immunoglobulin G (IgG). IgG deposition was found within human JNCL autopsy material, a feature that became more evident with increased age in Cln3(-/-) mice. The lymphocyte infiltration present in human and murine JNCL occurred late in disease progression, and was not capable of central/intrathecal IgG production. In contrast, we found evidence for an early systemic immune dysregulation in Cln3(-/-) mice. In addition evidence for a size-selective breach in the blood-brain barrier integrity in these mice suggests that systemically produced autoantibodies can access the JNCL central nervous system and contribute to a progressive inflammatory response.


Asunto(s)
Autoanticuerpos/líquido cefalorraquídeo , Encefalitis/inmunología , Glutamato Descarboxilasa/inmunología , Inmunoglobulina G/metabolismo , Isoenzimas/inmunología , Neuroinmunomodulación/inmunología , Lipofuscinosis Ceroideas Neuronales/inmunología , Animales , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/fisiopatología , Encéfalo/inmunología , Encéfalo/patología , Encéfalo/fisiopatología , Encefalitis/metabolismo , Encefalitis/fisiopatología , Humanos , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Linfocitos/patología , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/líquido cefalorraquídeo , Lipofuscinosis Ceroideas Neuronales/fisiopatología
8.
Neurobiol Dis ; 22(2): 284-93, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16412658

RESUMEN

Juvenile neuronal ceroid lipofuscinosis (JNCL) is an autosomal recessive disorder of childhood caused by mutations in CLN3. Although visual deterioration is typically the first clinical sign to manifest in affected children, loss of Cln3 in a mouse model of JNCL does not recapitulate this retinal deterioration. This suggests that either the loss of CLN3 does not directly affect retinal cell survival or that nuclei involved in visual processing are affected prior to retinal degeneration. Having previously demonstrated that Cln3(-/-) mice have decreased optic nerve axonal density, we now demonstrate a decrease in nerve conduction. Examination of retino-recipient regions revealed a decreased number of neurons within the dorsal lateral geniculate nucleus (LGNd). We demonstrate decreased transport of amino acids from the retina to the LGN, suggesting an impediment in communication between the retina and projection nuclei. This study defines a novel path of degeneration within the LGNd, providing a mechanism for causation of JNCL visual deficits.


Asunto(s)
Cuerpos Geniculados/fisiopatología , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Enfermedades del Nervio Óptico/fisiopatología , Degeneración Retiniana/fisiopatología , Animales , Transporte Axonal/genética , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Femenino , Cuerpos Geniculados/metabolismo , Cuerpos Geniculados/patología , Masculino , Ratones , Ratones Noqueados , Mutación/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Nervio Óptico/metabolismo , Nervio Óptico/patología , Nervio Óptico/fisiopatología , Enfermedades del Nervio Óptico/genética , Enfermedades del Nervio Óptico/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Baja Visión/genética , Baja Visión/metabolismo , Baja Visión/fisiopatología
9.
J Neurosci Res ; 79(5): 573-83, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15657902

RESUMEN

Batten disease, an inherited neurodegenerative storage disease affecting children, results from the autosomal recessive inheritance of mutations in Cln3. The function of the CLN3 protein remains unknown. A key to understanding the pathology of this devastating disease will be to elucidate the function of CLN3 at the cellular level. CLN3 has proven difficult to study as it is predicted to be a membrane protein expressed at relatively low levels. This article is a critical review of various approaches used in examining the structure, trafficking, and localization of CLN3. We conclude that CLN3 is likely resident in the lysosomal/endosomal membrane. Different groups have postulated conflicting orientations for CLN3 within this membrane. In addition, CLN3 undergoes several posttranslational modifications and is trafficked through the endoplasmic reticulum and Golgi. Recent evidence also suggests that CLN3 traffics via the plasma membrane. Although the function of this protein remains elusive, it is apparent that genetic alterations in Cln3 may have a direct affect on lysosomal function.


Asunto(s)
Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Animales , Humanos , Lisosomas/metabolismo , Modelos Moleculares , Degeneración Nerviosa/metabolismo , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA