Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nephron Physiol ; 99(2): p35-42, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15627804

RESUMEN

BACKGROUND/AIMS: The bile acids filtered through the glomeruli nearly completely escape urinary excretion due to an efficient tubular reabsorption process. Reabsorption is mediated mainly by the sodium-dependent bile acid transporter (ASBT) which is located in the brush border membranes of proximal tubular cells. The present study addresses the question whether this transporter is subject to short-term regulation by protein kinases. METHODS: The effects of specific activators or inhibitors of eight different protein kinases (PKs) on 3H-taurocholate uptake of proximal tubular cells were investigated. The cells were freshly isolated from rat kidneys by nycodenz density gradient centrifugation. RESULTS: Activation of the cAMP/PKA system by forskolin, 8-Br-cAMP, or the cAMP phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine significantly diminished cellular 3H-taurocholate uptake whereas 8-Br-cGMP had no effect. Also the MEK1/2 inhibitors PD98059 and U0126, and the p38 mitogen-activated protein (MAP) kinase inhibitor SB203580 decreased 3H-taurocholate uptake. Phorbol myristate acetate and dioctanolglycerol, activators of PKC, and chelerythrine, a selective inhibitor of PKC, did not affect 3H-taurocholate uptake. Likewise the phosphatidylinositol-3 kinase inhibitor wortmannin and the tyrosine kinase inhibitor genistein induced no significant change of cellular 3H-taurocholate uptake. In a sodium-free medium forskolin and PD98059 did not affect 3H-taurocholate uptake but SB203580 significantly decreased it. CONCLUSION: It is concluded that PKA and MAP kinases are involved in the regulation of the ASBT-mediated taurocholate uptake into proximal tubular cells. p38 MAP kinase may have an additional effect on a sodium-independent tubular taurocholate transporter.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Ácido Taurocólico/farmacocinética , Animales , Transporte Biológico Activo , Células Cultivadas , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA