Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 29(1): e202202318, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36214658

RESUMEN

A highly unusual solid-state epitaxy-induced phase transformation of Na4 SnS4 ⋅ 14H2 O (I) into Na4 Sn2 S6 ⋅ 5H2 O (II) occurs at room temperature. Ab initio molecular dynamics (AIMD) simulations indicate an internal acid-base reaction to form [SnS3 SH]3- which condensates to [Sn2 S6 ]4- . The reaction involves a complex sequence of O-H bond cleavage, S2- protonation, Sn-S bond formation and diffusion of various species while preserving the crystal morphology. In situ Raman and IR spectroscopy evidence the formation of [Sn2 S6 ]4- . DFT calculations allowed assignment of all bands appearing during the transformation. X-ray diffraction and in situ 1 H NMR demonstrate a transformation within several days and yield a reaction turnover of ≈0.38 %/h. AIMD and experimental ionic conductivity data closely follow a Vogel-Fulcher-Tammann type T dependence with D(Na)=6×10-14  m2 s-1 at T=300 K with values increasing by three orders of magnitude from -20 to +25 °C.

2.
Angew Chem Int Ed Engl ; 61(36): e202202182, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35648135

RESUMEN

We present the convenient synthesis and characterization of the new ternary thiostannate Na4 SnS4 (space group I 4 1 / a c d ) by directed removal of crystal water molecules from Na4 SnS4 ⋅14 H2 O. The compound represents a new kinetically stable polymorph of Na4 SnS4 , which is transformed into the known, thermodynamically stable form (space group P 4 ‾ 2 1 c ) at elevated temperatures. Thermal co-decomposition of mixtures with Na3 SbS4 ⋅9 H2 O generates solid solution products Na4-x Sn1-x Sbx S4 (x=0.01, 0.10) isostructural to the new polymorph (x=0). Incorporation of Sb5+ affects the bonding and local structural situation noticeably evidenced by X-ray diffraction, 119 Sn and 23 Na NMR, and 119 Sn Mössbauer spectroscopy. Electrochemical impedance spectroscopy demonstrates an enormous improvement of the ionic conductivity with increasing Sb content for the solid solution (σ25°C =2×10-3 , 2×10-2 , and 0.1 mS cm-1 for x=0, 0.01, and 0.10), being several orders of magnitude higher than for the known Na4 SnS4 polymorph.

3.
Inorg Chem ; 58(4): 2354-2362, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30702285

RESUMEN

The new transition-metal oxothiostannate [Ni(cyclen)(H2O)2]4[Sn10S20O4]·âˆ¼13H2O (1) was prepared under hydrothermal conditions using Na4SnS4·14H2O as the precursor in the presence of [Ni(cyclen)(H2O)2](ClO4)2·H2O. Compound 1 comprises the [Sn10S20O4]8- anion constructed by the T3-type supertetrahedron [Sn10S20] and the [Sn10O4] anti-T2 cluster. Channels host the H2O molecules, and the sample can be reversibly dehydrated and rehydrated without significantly affecting the crystallinity of the material. 119Sn NMR spectroscopy of an aqueous solution of Na4SnS4·14H2O evidences that between 25 and 120 °C only [SnS4]4- and [Sn2S6]4- anions are present. In further experiments, hints were found that the formation of tin oxosulfide ions depends on the Ni2+-centered complexes. Compound 1 exhibits promising photocatalytic properties for the visible-light-driven hydrogen evolution reaction, with 18.7 mmol·g-1 H2 being evolved after 3 h.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...