Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Sci Eng C Mater Biol Appl ; 96: 479-486, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30606557

RESUMEN

Surface of ultra-high-molecular-weight polyethylene (UHMWPE) was modified by chemical methods. Surface was firstly activated by Piranha solution and then grafted with selected amino-compounds (cysteamine, ethylenediamine or chitosan). The next step was grafting of some borane cluster compounds, highly fluorescent borane hydride cluster anti-B18H22 or its thiolated derivative 4,4'-(HS)2-anti-B18H20. Polymer foils were studied using various methods to characterize surface chemistry (X-ray photoelectron spectroscopy), roughness and morphology (atomic force microscopy, scanning electron microscopy), chemistry and polarity (electrokinetic analysis), wettability (goniometry) and photophysical properties (UV-Vis spectroscopy) before and after modification steps. Subsequently some kinds of antimicrobial tests were performed. Immobilization of anti-B18H22 in small quantities onto UHMWPE surface leads to materials with a luminescence. Samples grafted with borane clusters showed significant inhibition of growth for gram-positive bacteria (S. epidermidis). These approaches can be used for (i) luminophores on the base of polymers nanocomposites development and/or (ii) preparation of materials with antimicrobial effects.


Asunto(s)
Antiinfecciosos , Nanocompuestos/química , Polietilenos , Staphylococcus epidermidis/crecimiento & desarrollo , Antiinfecciosos/química , Antiinfecciosos/farmacología , Boranos/química , Polietilenos/química , Polietilenos/farmacología , Humectabilidad
2.
RSC Adv ; 8(27): 15001-15008, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35541325

RESUMEN

Polyethylene terephthalate (PET) foils were activated with piranha solution and grafted with selected amino compounds (cysteamine, ethylenediamine or chitosan) and then with borane compounds. Changes in their surface properties after particular modification steps were examined using electrokinetic analysis, X-ray photoelectron spectroscopy (XPS), goniometry and UV-vis spectroscopy. Several tests showed that the presence of some amino compounds and one borane cluster significantly improved the antimicrobial properties of the composites investigated. In particular, they exhibited strong antibacterial activity against Staphylococcus epidermidis but only weak activity against Escherichia coli. The samples modified with amino compounds and subsequently with borane clusters were luminescent under UV lamp irradiation. Therefore, the nanocomposites consisting of (cheap) polymer and (more expensive) borane could be used in luminophore development, medicine or environmental protection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...