Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 120(13): 136801, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694212

RESUMEN

Charge density waves (CDWs) in the second and third Landau levels (LLs) are investigated by both nonlinear electronic transport and noise. The use of a Corbino geometry ensures that only bulk properties are probed, with no contribution from edge states. Sliding transport of CDWs is revealed by narrow band noise in reentrant quantum Hall states R2a and R2c of the second LL, as well as in pinned CDWs of the third LL. Competition between various phases-stripe, pinned CDW, or fractional quantum Hall liquid-in both LLs are clearly revealed by combining noise data with maps of conductivity versus magnetic field and bias voltage.

2.
Phys Rev Lett ; 110(17): 176801, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23679754

RESUMEN

The quantum Hall effect is observed in a two-dimensional electron gas formed in millimeter-scale hydrogenated graphene, with a mobility less than 10 cm2/V·s and corresponding Ioffe-Regel disorder parameter (k(F)λ)(-1) ≫ 1. In a zero magnetic field and low temperatures, the hydrogenated graphene is insulating with a two-point resistance of the order of 250h/e2. The application of a strong magnetic field generates a negative colossal magnetoresistance, with the two-point resistance saturating within 0.5% of h/2e2 at 45 T. Our observations are consistent with the opening of an impurity-induced gap in the density of states of graphene. The interplay between electron localization by defect scattering and magnetic confinement in two-dimensional atomic crystals is discussed.

3.
Phys Rev Lett ; 110(1): 016801, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23383820

RESUMEN

We investigate electron dynamics at the graphene edge by studying the propagation of collective edge magnetoplasmon excitations. By timing the travel of narrow wave packets on picosecond time scales around exfoliated samples, we find chiral propagation with low attenuation at a velocity that is quantized on Hall plateaus. We extract the carrier drift contribution from the edge magnetoplasmon propagation and find it to be slightly less than the Fermi velocity, as expected for an abrupt edge. We also extract the characteristic length for Coulomb interaction at the edge and find it to be smaller than that for soft depletion-edge systems.

4.
Phys Rev Lett ; 104(12): 126801, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20366555

RESUMEN

Transport and elastic scattering times, tau{tr} and tau{e}, are experimentally determined from the carrier density dependence of the magnetoconductance of monolayer and bilayer graphene. Both times and their dependences on carrier density are found to be very different in the monolayer and the bilayer. However, their ratio tau{tr}/tau{e} is found to be close to 1.8 in the two systems and nearly independent of the carrier density. These measurements give insight on the nature (neutral or charged) and range of the scatterers. Comparison with theoretical predictions suggests that the main scattering mechanism in our samples is due to strong (resonant) scatterers of a range shorter than the Fermi wavelength, likely candidates being vacancies, voids, adatoms or short-range ripples.

5.
Int J Cosmet Sci ; 28(1): 53-9, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18492201

RESUMEN

Several products are known to inhibit the biosynthesis of ceramides and glucosylceramides, but very few stimulate this process. We studied the influence of a hydrolysate of potato proteins (Lipidessence) in vitro on the sphingolipid metabolism of normal human epidermal keratinocytes. By measuring growth with the thymidine uptake assay, it was seen that Lipidessence, added in the culture medium up to an 8% concentration, did not change significantly the proliferation rate of keratinocytes, but beyond this concentration a progressive dose-dependent inhibition of growth was noticeable. Following incubation of cells with the product at 5% and 10% concentrations for 2 days, the lipids were extracted. The different lipid classes were separated by fractionation on columns of aminopropyl silica gel and analyzed by high-performance thin-layer chromatography. When keratinocytes were cultivated in the presence of Lipidessence, the biosynthesis of cholesterol, phosphatidylcholine, phosphatidylserine and gangliosides was stimulated, and a major increase was noticeable in the biosynthesis of free fatty acids, free ceramides, glucosylceramide and sphingomyelin. Radioactive [(14)C]-serine was used as a precursor of sphingoid bases to study sphingolipid biosynthesis. After migration of lipid fractions on thin-layer plates, autoradiography showed that free ceramides and glucosylceramide were labeled, thus suggesting that de novo biosynthesis was accounting for the increased cellular content in sphingolipids.

6.
Phys Rev Lett ; 89(4): 042502, 2002 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-12144478

RESUMEN

This work presents the first continuum shell-model study of weakly bound neutron-rich nuclei involving multiconfiguration mixing. For the single-particle basis, the complex-energy Berggren ensemble representing the bound single-particle states, narrow resonances, and the nonresonant continuum background is taken. Our shell-model Hamiltonian consists of a one-body finite potential and a zero-range residual two-body interaction. It is demonstrated that the residual interaction coupling to the particle continuum is important; in some cases, it can give rise to the binding of a nucleus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...