Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 537(7621): 535-538, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27580034

RESUMEN

Biological activity is a major factor in Earth's chemical cycles, including facilitating CO2 sequestration and providing climate feedbacks. Thus a key question in Earth's evolution is when did life arise and impact hydrosphere-atmosphere-lithosphere chemical cycles? Until now, evidence for the oldest life on Earth focused on debated stable isotopic signatures of 3,800-3,700 million year (Myr)-old metamorphosed sedimentary rocks and minerals from the Isua supracrustal belt (ISB), southwest Greenland. Here we report evidence for ancient life from a newly exposed outcrop of 3,700-Myr-old metacarbonate rocks in the ISB that contain 1-4-cm-high stromatolites-macroscopically layered structures produced by microbial communities. The ISB stromatolites grew in a shallow marine environment, as indicated by seawater-like rare-earth element plus yttrium trace element signatures of the metacarbonates, and by interlayered detrital sedimentary rocks with cross-lamination and storm-wave generated breccias. The ISB stromatolites predate by 220 Myr the previous most convincing and generally accepted multidisciplinary evidence for oldest life remains in the 3,480-Myr-old Dresser Formation of the Pilbara Craton, Australia. The presence of the ISB stromatolites demonstrates the establishment of shallow marine carbonate production with biotic CO2 sequestration by 3,700 million years ago (Ma), near the start of Earth's sedimentary record. A sophistication of life by 3,700 Ma is in accord with genetic molecular clock studies placing life's origin in the Hadean eon (>4,000 Ma).


Asunto(s)
Fósiles , Sedimentos Geológicos/microbiología , Origen de la Vida , Agua de Mar/microbiología , Organismos Acuáticos , Australia , Vida , Factores de Tiempo
2.
Nat Commun ; 7: 10665, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26879892

RESUMEN

The extension of subduction processes into the Eoarchaean era (4.0-3.6 Ga) is controversial. The oldest reported terrestrial olivine, from two dunite lenses within the ∼3,720 Ma Isua supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel to the maximum finite elongation direction and (010) perpendicular to the foliation plane define a B-type LPO. In the modern Earth such fabrics are associated with deformation of mantle rocks in the hanging wall of subduction systems; an interpretation supported by experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter supported by compositional data from nearby mafic rocks. Our results provide independent microstructural data consistent with the operation of Eoarchaean subduction and indicate that microstructural analyses of ancient ultramafic rocks provide a valuable record of Archaean geodynamics.

3.
Science ; 335(6072): 1051-2, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22383835
4.
Science ; 318(5858): 1907-10, 2007 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-18096803

RESUMEN

The oldest rocks-3.85 billion years old-from southwest Greenland have coupled neodymium-142 excesses (from decay of now-extinct samarium-146; half-life, 103 million years) and neodymium-143 excesses (from decay of samarium-147; half-life, 106 billion years), relative to chondritic meteorites, that directly date the formation of chemically distinct silicate reservoirs in the first 30 million to 75 million years of Earth history. The differences in 142Nd signatures of coeval rocks from the two most extensive crustal relicts more than 3.6 billion years old, in Western Australia and southwest Greenland, reveal early-formed large-scale chemical heterogeneities in Earth's mantle that persisted for at least the first billion years of Earth history. Temporal variations in 142Nd signatures track the subsequent incomplete remixing of very-early-formed mantle chemical domains.

5.
Nature ; 422(6929): 294-7, 2003 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-12646918

RESUMEN

Variations in the 187Os/188Os isotopic signature of mantle and mantle-derived rocks have been thought to provide a powerful chemical tracer of deep Earth structure. Many studies have inferred from such data that a long-lived, high-rhenium component exists in the deep mantle (187Re is the parent isotope decaying to 187Os, with a half-life of approximately 42 billion years), and that this reservoir probably consists of subducted oceanic crust. The interpretation of these isotopic signatures is, however, dependent on accurate estimates of rhenium and osmium concentrations in all of the main geochemical reservoirs, and the crust has generally been considered to be a minor contributor to such global budgets. In contrast, we here present observations of high rhenium concentrations and low Yb/Re ratios in arc-type melt inclusions. These results indicate strong enrichment of rhenium in undegassed arc rocks, and consequently the continental crust, which results in a crustal estimate of 2 p.p.b. rhenium, as compared to previous estimates of 0.4-0.2 p.p.b. (refs 4, 5). Previous determinations of rhenium in arc materials, which were largely measured on subaerially erupted samples, are likely to be in error owing to rhenium loss during degassing. High mantle-to-crust rhenium fluxes, as observed here, require a revaluation of geochemical models based on the 187Re-187Os decay system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA