Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bone Res ; 10(1): 8, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35078974

RESUMEN

A gain-of-function mutation in the fibroblast growth factor receptor 3 gene (FGFR3) results in achondroplasia (ACH), the most frequent form of dwarfism. Constitutive activation of FGFR3 impairs bone formation and elongation and many signal transduction pathways. Identification of new and relevant compounds targeting the FGFR3 signaling pathway is of broad importance for the treatment of ACH, and natural plant compounds are prime drug candidate sources. Here, we found that the phenolic compound (-)-epicatechin, isolated from Theobroma cacao, effectively inhibited FGFR3's downstream signaling pathways. Transcriptomic analysis in an Fgfr3 mouse model showed that ciliary mRNA expression was modified and influenced significantly by the Indian hedgehog and PKA pathways. (-)-Epicatechin is able to rescue mRNA expression impairments that control both the structural organization of the primary cilium and ciliogenesis-related genes. In femurs isolated from a mouse model (Fgfr3Y367C/+) of ACH, we showed that (-)-epicatechin eliminated bone growth impairment during 6 days of ex vivo culture. In vivo, we confirmed that daily subcutaneous injections of (-)-epicatechin to Fgfr3Y367C/+ mice increased bone elongation and rescued the primary cilium defects observed in chondrocytes. This modification to the primary cilia promoted the typical columnar arrangement of flat proliferative chondrocytes and thus enhanced bone elongation. The results of the present proof-of-principle study support (-)-epicatechin as a potential drug for the treatment of ACH.

2.
Hum Mol Genet ; 27(1): 1-13, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040558

RESUMEN

Fibroblast growth factor receptor 3 (FGFR3) gain-of-function mutations cause dwarfisms, including achondroplasia (ACH) and thanatophoric dysplasia (TD). The constitutive activation of FGFR3 disrupts the normal process of skeletal growth. Bone-growth anomalies have been identified in skeletal ciliopathies, in which primary cilia (PC) function is disrupted. In human ACH and TD, the impact of FGFR3 mutations on PC in growth plate cartilage remains unknown. Here we showed that in chondrocytes from human (ACH, TD) and mouse Fgfr3Y367C/+ cartilage, the constitutively active FGFR3 perturbed PC length and the sorting and trafficking of intraflagellar transport (IFT) 20 to the PC. We demonstrated that inhibiting FGFR3 with FGFR inhibitor, PD173074, rescued both PC length and IFT20 trafficking. We also studied the impact of rapamycin, an inhibitor of mammalian target of rapamycin (mTOR) pathway. Interestingly, mTOR inhibition also rescued PC length and IFT20 trafficking. Together, we provide evidence that the growth plate defects ascribed to FGFR3-related dwarfisms are potentially due to loss of PC function, and these dwarfisms may represent a novel type of skeletal disorders with defective ciliogenesis.


Asunto(s)
Acondroplasia/metabolismo , Proteínas Portadoras/metabolismo , Condrocitos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Acondroplasia/genética , Acondroplasia/patología , Animales , Desarrollo Óseo/genética , Proteínas Portadoras/genética , Cartílago/metabolismo , Cartílago/patología , Diferenciación Celular/fisiología , Línea Celular , Movimiento Celular/fisiología , Condrocitos/patología , Cilios/genética , Cilios/metabolismo , Modelos Animales de Enfermedad , Femenino , Placa de Crecimiento/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Pirimidinas/farmacología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal
3.
Hum Mol Genet ; 25(14): 2997-3010, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27260401

RESUMEN

Activating FGFR3 mutations in human result in achondroplasia (ACH), the most frequent form of dwarfism, where cartilages are severely disturbed causing long bones, cranial base and vertebrae defects. Because mandibular development and growth rely on cartilages that guide or directly participate to the ossification process, we investigated the impact of FGFR3 mutations on mandibular shape, size and position. By using CT scan imaging of ACH children and by analyzing Fgfr3Y367C/+ mice, a model of ACH, we show that FGFR3 gain-of-function mutations lead to structural anomalies of primary (Meckel's) and secondary (condylar) cartilages of the mandible, resulting in mandibular hypoplasia and dysmorphogenesis. These defects are likely related to a defective chondrocyte proliferation and differentiation and pan-FGFR tyrosine kinase inhibitor NVP-BGJ398 corrects Meckel's and condylar cartilages defects ex vivo. Moreover, we show that low dose of NVP-BGJ398 improves in vivo condyle growth and corrects dysmorphologies in Fgfr3Y367C/+ mice, suggesting that postnatal treatment with NVP-BGJ398 mice might offer a new therapeutic strategy to improve mandible anomalies in ACH and others FGFR3-related disorders.


Asunto(s)
Acondroplasia/genética , Cartílago/anomalías , Mandíbula/anomalías , Cóndilo Mandibular/anomalías , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Acondroplasia/diagnóstico por imagen , Acondroplasia/tratamiento farmacológico , Acondroplasia/fisiopatología , Animales , Cartílago/crecimiento & desarrollo , Cartílago/fisiopatología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Condrocitos/metabolismo , Condrocitos/patología , Modelos Animales de Enfermedad , Humanos , Mandíbula/crecimiento & desarrollo , Mandíbula/fisiopatología , Cóndilo Mandibular/crecimiento & desarrollo , Cóndilo Mandibular/fisiopatología , Ratones , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Compuestos de Fenilurea/administración & dosificación , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirimidinas/administración & dosificación
4.
J Clin Invest ; 126(5): 1871-84, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27064282

RESUMEN

Achondroplasia (ACH) is the most frequent form of dwarfism and is caused by gain-of-function mutations in the fibroblast growth factor receptor 3-encoding (FGFR3-encoding) gene. Although potential therapeutic strategies for ACH, which aim to reduce excessive FGFR3 activation, have emerged over many years, the use of tyrosine kinase inhibitor (TKI) to counteract FGFR3 hyperactivity has yet to be evaluated. Here, we have reported that the pan-FGFR TKI, NVP-BGJ398, reduces FGFR3 phosphorylation and corrects the abnormal femoral growth plate and calvaria in organ cultures from embryos of the Fgfr3Y367C/+ mouse model of ACH. Moreover, we demonstrated that a low dose of NVP-BGJ398, injected subcutaneously, was able to penetrate into the growth plate of Fgfr3Y367C/+ mice and modify its organization. Improvements to the axial and appendicular skeletons were noticeable after 10 days of treatment and were more extensive after 15 days of treatment that started from postnatal day 1. Low-dose NVP-BGJ398 treatment reduced intervertebral disc defects of lumbar vertebrae, loss of synchondroses, and foramen-magnum shape anomalies. NVP-BGJ398 inhibited FGFR3 downstream signaling pathways, including MAPK, SOX9, STAT1, and PLCγ, in the growth plates of Fgfr3Y367C/+ mice and in cultured chondrocyte models of ACH. Together, our data demonstrate that NVP-BGJ398 corrects pathological hallmarks of ACH and support TKIs as a potential therapeutic approach for ACH.


Asunto(s)
Acondroplasia/tratamiento farmacológico , Condrocitos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Pirimidinas/farmacología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Acondroplasia/genética , Acondroplasia/metabolismo , Acondroplasia/patología , Animales , Línea Celular Transformada , Condrocitos/patología , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Disco Intervertebral/metabolismo , Disco Intervertebral/patología , Vértebras Lumbares/metabolismo , Vértebras Lumbares/patología , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Mutantes , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
5.
Endocrinology ; 155(8): 3123-35, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24914940

RESUMEN

Thyroid hormone (T3) is required for postnatal skeletal growth. It exerts its effect by binding to nuclear receptors, TRs including TRα1 and TRß1, which are present in most cell types. These cell types include chondrocytes and osteoblasts, the interactions of which are known to regulate endochondral bone formation. In order to analyze the respective functions of T3 stimulation in chondrocytes and osteoblasts during postnatal growth, we use Cre/loxP recombination to express a dominant-negative TRα1(L400R) mutant receptor in a cell-specific manner. Phenotype analysis revealed that inhibiting T3 response in chondrocytes is sufficient to reproduce the defects observed in hypothyroid mice, not only for cartilage maturation, but also for ossification and mineralization. TRα1(L400R) in chondrocytes also results in skull deformation. In the meantime, TRα1(L400R) expression in mature osteoblasts has no visible effect. Transcriptome analysis identifies a number of changes in gene expression induced by TRα1(L400R) in cartilage. These changes suggest that T3 normally cross talks with several other signaling pathways to promote chondrocytes proliferation, differentiation, and skeletal growth.


Asunto(s)
Desarrollo Óseo , Condrocitos/fisiología , Osteoblastos/fisiología , Receptores alfa de Hormona Tiroidea/fisiología , Animales , Diferenciación Celular , Condrocitos/citología , Femenino , Hipotiroidismo/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteogénesis , Receptor Cross-Talk , Triyodotironina/fisiología
6.
Hum Mol Genet ; 23(11): 2914-25, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24419316

RESUMEN

FGFR3 gain-of-function mutations lead to both chondrodysplasias and craniosynostoses. Achondroplasia (ACH), the most frequent dwarfism, is due to an FGFR3-activating mutation which results in impaired endochondral ossification. The effects of the mutation on membranous ossification are unknown. Fgfr3(Y367C/+) mice mimicking ACH and craniofacial analysis of patients with ACH and FGFR3-related craniosynostoses provide an opportunity to address this issue. Studying the calvaria and skull base, we observed abnormal cartilage and premature fusion of the synchondroses leading to modifications of foramen magnum shape and size in Fgfr3(Y367C/+) mice, ACH and FGFR3-related craniosynostoses patients. Partial premature fusion of the coronal sutures and non-ossified gaps in frontal bones were also present in Fgfr3(Y367C/+) mice and ACH patients. Our data provide strong support that not only endochondral ossification but also membranous ossification is severely affected in ACH. Demonstration of the impact of FGFR3 mutations on craniofacial development should initiate novel pharmacological and surgical therapeutic approaches.


Asunto(s)
Acondroplasia/enzimología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Acondroplasia/genética , Acondroplasia/patología , Animales , Condrocitos/citología , Condrocitos/enzimología , Femenino , Humanos , Lactante , Masculino , Ratones , Ratones Transgénicos , Mutación Missense , Osificación Heterotópica , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Cráneo/anatomía & histología , Cráneo/embriología , Cráneo/enzimología , Cráneo/patología
7.
Am J Hum Genet ; 91(6): 1108-14, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23200862

RESUMEN

Achondroplasia (ACH), the most common form of dwarfism, is an inherited autosomal-dominant chondrodysplasia caused by a gain-of-function mutation in fibroblast-growth-factor-receptor 3 (FGFR3). C-type natriuretic peptide (CNP) antagonizes FGFR3 downstream signaling by inhibiting the pathway of mitogen-activated protein kinase (MAPK). Here, we report the pharmacological activity of a 39 amino acid CNP analog (BMN 111) with an extended plasma half-life due to its resistance to neutral-endopeptidase (NEP) digestion. In ACH human growth-plate chondrocytes, we demonstrated a decrease in the phosphorylation of extracellular-signal-regulated kinases 1 and 2, confirming that this CNP analog inhibits fibroblast-growth-factor-mediated MAPK activation. Concomitantly, we analyzed the phenotype of Fgfr3(Y367C/+) mice and showed the presence of ACH-related clinical features in this mouse model. We found that in Fgfr3(Y367C/+) mice, treatment with this CNP analog led to a significant recovery of bone growth. We observed an increase in the axial and appendicular skeleton lengths, and improvements in dwarfism-related clinical features included flattening of the skull, reduced crossbite, straightening of the tibias and femurs, and correction of the growth-plate defect. Thus, our results provide the proof of concept that BMN 111, a NEP-resistant CNP analog, might benefit individuals with ACH and hypochondroplasia.


Asunto(s)
Acondroplasia/tratamiento farmacológico , Péptido Natriurético Tipo-C/análogos & derivados , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Acondroplasia/diagnóstico , Acondroplasia/genética , Animales , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Modelos Animales de Enfermedad , Placa de Crecimiento/efectos de los fármacos , Placa de Crecimiento/patología , Humanos , Ratones , Mutación , Péptido Natriurético Tipo-C/química , Péptido Natriurético Tipo-C/fisiología , Péptido Natriurético Tipo-C/uso terapéutico , Tamaño de los Órganos/efectos de los fármacos , Radiografía , Cráneo/diagnóstico por imagen , Cráneo/efectos de los fármacos , Cráneo/patología , Resultado del Tratamiento
8.
Hum Mol Genet ; 21(11): 2503-13, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22367969

RESUMEN

The fibroblast growth factor receptor 3 (FGFR3) plays a critical role in the regulation of endochondral ossification. Fgfr3 gain-of-function mutations cause achondroplasia, the most common form of dwarfism, and a spectrum of chondrodysplasias. Despite a significant number of studies on the role of FGFR3 in cartilage, to date, none has investigated the influence of Fgfr3-mediated effects of the growth plate on bone formation. We studied three mouse models, each expressing Fgfr3 mutation either ubiquitously (CMV-Fgfr3(Y367C/+)), in chondrocytes (Col II-Fgfr3(Y367C/+)) or in mature osteoblasts (Col I-Fgfr3(Y367C/+)). Interestingly, we demonstrated that dwarfism with a significant defect in bone formation during growth was only observed in mouse models expressing mutant Fgfr3 in the cartilage. We observed a dramatic reduction in cartilage matrix mineralization and a strong defect of primary spongiosa. Anomalies of primary spongiosa were associated with an increase in osteoclast recruitment and a defect of osteoblasts at the mineralization front. A significant decrease in bone volume, trabecular thickness and number was also observed in the trabecular bone. Interestingly, no anomalies in proliferation and differentiation of primary osteoblasts from CMV-Fgfr3(Y367C/+) mice were observed. Based on these data, we excluded a potential function of Fgfr3 directly on osteoblasts at 3 weeks of age and we obtained evidence that the disorganization of the growth plate is responsible for the anomalies of the trabecular bone during bone formation. Herein, we propose that impaired FGFR3 signaling pathways may affect trabecular bone formation via a paracrine mechanism during growth. These results redefine our understanding of endochondral ossification in FGFR3-related chondrodysplasias.


Asunto(s)
Mutación , Comunicación Paracrina/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Animales , Proliferación Celular , Condrocitos/metabolismo , Placa de Crecimiento/metabolismo , Ratones , Ratones Transgénicos , Osteoblastos/metabolismo , Osteogénesis/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo
9.
Hum Mol Genet ; 21(4): 841-51, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22072392

RESUMEN

Activating germline fibroblast growth factor receptor 3 (FGFR3) mutations cause achondroplasia (ACH), the most common form of human dwarfism and a spectrum of skeletal dysplasias. FGFR3 is a tyrosine kinase receptor and constitutive FGFR3 activation impairs endochondral ossification and triggers severe disorganization of the cartilage with shortening of long bones. To decipher the role of FGFR3 in endochondral ossification, we analyzed the impact of a novel tyrosine kinase inhibitor (TKI), A31, on both human and mouse mutant FGFR3-expressing cells and on the skeleton of Fgfr3(Y367C/+) dwarf mice. We found that A31 inhibited constitutive FGFR3 phosphorylation and restored the size of embryonic dwarf femurs using an ex vivo culture system. The increase in length of the treated mutant femurs was 2.6 times more than for the wild-type. Premature cell cycle exit and defective chondrocyte differentiation were observed in the Fgfr3(Y367C/+) growth plate. A31 restored normal expression of cell cycle regulators (proliferating cell nuclear antigen, KI67, cyclin D1 and p57) and allowed pre-hypertrophic chondrocytes to properly differentiate into hypertrophic chondocytes. Our data reveal a specific role for FGFR3 in the cell cycle and chondrocyte differentiation and support the development of TKIs for the treatment of FGFR3-related chondrodysplasias.


Asunto(s)
Desarrollo Óseo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Condrocitos/citología , Condrocitos/efectos de los fármacos , Modelos Animales , Inhibidores de Proteínas Quinasas/farmacología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Animales , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Fémur/efectos de los fármacos , Fémur/embriología , Placa de Crecimiento/efectos de los fármacos , Técnicas In Vitro , Ratones , Modelos Moleculares , Fosforilación/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacología , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética
10.
Bone ; 47(5): 905-15, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20673820

RESUMEN

Achondroplasia (ACH), the most common form of human dwarfism is caused by a mutation in the Fibroblast Growth Factor Receptor 3 (FGFR3) gene, resulting in constitutive activation of the receptor. Typical radiological features include shortening of the tubular bones and macrocephaly, due to disruption of endochondral ossification. Consequently, FGFR3 has been described as a negative regulator of bone growth. Studying a large cohort of ACH patients, a delay in bone age was observed shortly after birth (for boys p=2.6×10(-9) and for girls p=1.2×10(-8)). This delay was no longer apparent during adolescence. In order to gain further insight into bone formation, bone development was studied in a murine model of chondrodysplasia (Fgfr3(Y367C/+)) from birth to 6weeks of age. Delayed bone age was also observed in Fgfr3(Y367C/+) mice at 1week of age followed by an accelerated secondary ossification center formation. A low level of chondrocyte proliferation was observed in the normal growth plate at birth, which increased with bone growth. In the pathological condition, a significantly high level of proliferative cells was present at birth, but exhibited a transient decrease only to rise again subsequently. Histological and in situ analyses suggested the altered endochondral ossification process may result from delayed chondrocyte differentiation, disruption of vascularization and osteoblast invasion of the femur. All these data provide evidence that FGFR3 regulates normal chondrocyte proliferation and differentiation during bone growth and suggest that constitutive activation of the receptor disrupts both processes. Therefore, the consequences of FGFR3 activation on the physiological process of bone development appear to be dependent on spatial and temporal occurrence. In conclusion, these observations support the notion that FGFR3 has a dual effect, as both a negative and a positive regulator of the endochondral ossification process during post-natal bone development.


Asunto(s)
Acondroplasia/genética , Acondroplasia/patología , Huesos/metabolismo , Huesos/patología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Adolescente , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular , Niño , Preescolar , Condrocitos/citología , Femenino , Humanos , Hibridación in Situ , Lactante , Recién Nacido , Masculino , Ratones , Ratones Mutantes , Mutación , Osificación Heterotópica
11.
Org Biomol Chem ; 8(9): 2164-73, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20401393

RESUMEN

A library of pyrido[2,3-d]pyrimidines was designed as inhibitors of FGFR3 tyrosine kinase allowing possible interactions with an unexploited region of the ATP binding-site. This library was built-up with an efficient step of click-chemistry giving easy access to triazole-based compounds bearing a large panel of substituents. Among the 27 analogues synthesized, more than half exhibited 55-89% inhibition of in vitro FGFR3 kinase activity at 2 microM and one (19g) was able to inhibit auto-phosphorylation of mutant FGFR3-K650M in transfected HEK cells.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Piridinas/química , Piridinas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Triazoles/química , Sitios de Unión , Línea Celular , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Piridinas/síntesis química , Pirimidinas/síntesis química , Proteínas Recombinantes/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas , Estereoisomerismo , Relación Estructura-Actividad
12.
PLoS One ; 4(10): e7633, 2009 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-19898608

RESUMEN

Endochondral ossification is the process by which the appendicular skeleton, facial bones, vertebrae and medial clavicles are formed and relies on the tight control of chondrocyte maturation. Fibroblast growth factor receptor (FGFR)3 plays a role in bone development and maintenance and belongs to a family of proteins which differ in their ligand affinities and tissue distribution. Activating mutations of the FGFR3 gene lead to craniosynostosis and multiple types of skeletal dysplasia with varying degrees of severity: thanatophoric dysplasia (TD), achondroplasia and hypochondroplasia. Despite progress in the characterization of FGFR3-mediated regulation of cartilage development, many aspects remain unclear. The aim and the novelty of our study was to examine whole gene expression differences occurring in primary human chondrocytes isolated from normal cartilage or pathological cartilage from TD-affected fetuses, using Affymetrix technology. The phenotype of the primary cells was confirmed by the high expression of chondrocytic markers. Altered expression of genes associated with many cellular processes was observed, including cell growth and proliferation, cell cycle, cell adhesion, cell motility, metabolic pathways, signal transduction, cell cycle process and cell signaling. Most of the cell cycle process genes were down-regulated and consisted of genes involved in cell cycle progression, DNA biosynthesis, spindle dynamics and cytokinesis. About eight percent of all modulated genes were found to impact extracellular matrix (ECM) structure and turnover, especially glycosaminoglycan (GAG) and proteoglycan biosynthesis and sulfation. Altogether, the gene expression analyses provide new insight into the consequences of FGFR3 mutations in cell cycle regulation, onset of pre-hypertrophic differentiation and concomitant metabolism changes. Moreover, impaired motility and ECM properties may also provide clues about growth plate disorganization. These results also suggest that many signaling pathways may be directly or indirectly altered by FGFR3 and confirm the crucial role of FGFR3 in the control of growth plate development.


Asunto(s)
Cartílago/embriología , Condrocitos/metabolismo , Exostosis Múltiple Hereditaria/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Cartílago/metabolismo , Proliferación Celular , Condrocitos/citología , Exostosis Múltiple Hereditaria/metabolismo , Matriz Extracelular , Heterocigoto , Humanos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Proteoglicanos/metabolismo , Control de Calidad , Transducción de Señal
13.
FEBS Lett ; 581(14): 2593-8, 2007 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-17507011

RESUMEN

Achondroplasia and thanatophoric dysplasia are human chondrodysplasias caused by mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. We have developed an immortalized human chondrocyte culture model to study the regulation of chondrocyte functions. One control and eight mutant chondrocytic lines expressing different FGFR3 heterozygous mutations were obtained. FGFR3 signaling pathways were modified in the mutant lines as revealed by the constitutive activation of the STAT pathway and an increased level of P21(WAF1/CIP1) protein. This model will be useful for the study of FGFR3 function in cartilage studies and future therapeutic approaches in chondrodysplasias.


Asunto(s)
Condrocitos/metabolismo , Mutación , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular Transformada , Células Cultivadas , Condrocitos/citología , Colágeno Tipo II/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Expresión Génica , Heterocigoto , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Immunoblotting , Microscopía Fluorescente , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción SOX9 , Factores de Transcripción STAT/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética
14.
Bone ; 39(1): 17-26, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16476576

RESUMEN

Multiple hereditary exostoses (MHE) is an autosomal dominant skeletal disorder caused by mutations in one of the two EXT genes and characterized by multiple osteochondromas that generally arise near the ends of growing long bones. Defective endochondral ossification is likely to be involved in the formation of osteochondromas. In order to investigate potential changes in chondrocyte proliferation and/or differentiation during this process, osteochondroma samples from MHE patients were obtained and used for genetic, morphological, immunohistological, and in situ hybridization studies. The expression patterns of IHH (Indian hedgehog) and FGFR3 (Fibroblast Growth Factor Receptor 3) were similar with transcripts expressed throughout osteochondromas. Expression of PTHR1 (Parathyroid Hormone Receptor 1) transcripts was restricted to a narrow zone of prehypertrophic chondrocytes. Numerous cells forming osteochondromas although resembling prehypertrophic chondrocytes, stained positively with an anti-proliferating cell nuclear antigen (PCNA) antibody. In addition, ectopic expression of collagen type I and abnormal presence of osteocalcin (OC), osteopontin (OP), and bone sialoprotein (BSP) were observed in the cartilaginous osteochondromas. These data indicate that most chondrocytes involved in the growth of osteochondromas can proliferate, and that some of them exhibit bone-forming cell characteristics. We conclude that in MHE, defective heparan sulfate biosynthesis caused by EXT mutations maintains the proliferative capacity of chondrocytes and promotes phenotypic modification to bone-forming cells.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Proliferación Celular , Condrocitos/patología , Exostosis Múltiple Hereditaria/genética , Adolescente , Adulto , Estudios de Casos y Controles , Células Cultivadas , Niño , Preescolar , Condrocitos/ultraestructura , Colágeno Tipo I/metabolismo , ADN/genética , Análisis Mutacional de ADN , Exostosis Múltiple Hereditaria/diagnóstico , Exostosis Múltiple Hereditaria/patología , Femenino , Ligamiento Genético , Humanos , Inmunohistoquímica , Hibridación in Situ , Sialoproteína de Unión a Integrina , Pérdida de Heterocigocidad , Masculino , Mutación , Osteocalcina/metabolismo , Antígeno Nuclear de Célula en Proliferación/análisis , Sialoglicoproteínas/metabolismo
15.
Am J Hum Genet ; 75(5): 801-6, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15368195

RESUMEN

Weill-Marchesani syndrome (WMS) is characterized by the association of short stature; brachydactyly; joint stiffness; eye anomalies, including microspherophakia and ectopia of the lenses; and, occasionally, heart defects. We have recently mapped a gene for the autosomal recessive form of WMS to chromosome 19p13.3-p13.2, in a 12.4-cM interval. Here, we report null mutations in a member of the extracellular matrix protease family, the gene encoding ADAMTS10, a disintegrin and metalloprotease with thrombospondin motifs. A total of three distinct mutations were identified in two consanguineous families and in one sporadic WMS case, including one nonsense mutation (R237X) and two splice mutations (1190+1G-->A and 810+1G-->A). ADAMTS10 expression studies using reverse-transcriptase polymerase chain reaction, northern blot, and dot-blot analyses showed that ADAMTS10 is expressed in skin, fetal chondrocytes, and fetal and adult heart. Moreover, electron microscopy and immunological studies of the skin fibroblasts from the patients confirmed impairment of the extracellular matrix. We conclude, therefore, that ADAMTS10 plays a major role in growth and in skin, lens, and heart development in humans.


Asunto(s)
Anomalías Múltiples/genética , Proteínas de la Matriz Extracelular/genética , Expresión Génica , Proteínas ADAM , Proteínas ADAMTS , Actinas/metabolismo , Secuencia de Bases , Northern Blotting , Niño , Cartilla de ADN , Enanismo/genética , Anomalías del Ojo/genética , Fibroblastos/inmunología , Fibroblastos/ultraestructura , Componentes del Gen , Genes Recesivos/genética , Humanos , Immunoblotting , Metaloendopeptidasas/genética , Microscopía Electrónica , Datos de Secuencia Molecular , Mutación/genética , Linaje , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Síndrome
16.
Am J Pathol ; 161(4): 1325-35, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12368206

RESUMEN

The fibroblast growth factor receptor type 3 (FGFR3) and Indian hedgehog (IHH)/parathyroid hormone (PTH)/PTH-related peptide receptor type 1 (PTHR1) systems are both essential regulators of endochondral ossification. Based on mouse models, activation of the FGFR3 system is suggested to regulate the IHH/PTHR1 pathway. To challenge this possible interaction in humans, we analyzed the femoral growth plates from fetuses carrying activating FGFR3 mutations (9 achondroplasia, 21 and 8 thanatophoric dysplasia types 1 and 2, respectively) and 14 age-matched controls by histological techniques and in situ hybridization using riboprobes for human IHH, PTHR1, type 10 and type 1 collagen transcripts. We show that bone-perichondrial ring enlargement and growth plate increased vascularization in FGFR3-mutated fetuses correlate with the phenotypic severity of the disease. PTHR1 and IHH expression in growth plates, bone-perichondrial rings and vascular canals is not affected by FGFR3 mutations, irrespective of the mutant genotype and age, and is in keeping with cell phenotypes. These results indicate that in humans, FGFR3 signaling does not down-regulate the main players of the IHH/PTHR1 pathway. Furthermore, we show that cells within the bone-perichondrial ring in controls and patients express IHH, PTHR1, and type 10 and type 1 collagen transcripts, suggesting that bone-perichondrial ring formation involves cells of both chondrocytic and osteoblastic phenotypes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Placa de Crecimiento/embriología , Mutación , Proteínas Tirosina Quinasas , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Hormona Paratiroidea/genética , Transactivadores/genética , Acondroplasia/embriología , Acondroplasia/genética , Acondroplasia/patología , División Celular , Desarrollo Embrionario y Fetal , Fémur/embriología , Genotipo , Placa de Crecimiento/anomalías , Placa de Crecimiento/patología , Proteínas Hedgehog , Humanos , Fenotipo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Displasia Tanatofórica/embriología , Displasia Tanatofórica/genética , Displasia Tanatofórica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA