Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Endocrinol Metab ; 107(4): e1367-e1373, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-34897474

RESUMEN

CONTEXT: Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disease caused by mutations in the tumor suppressor gene MEN1. The uncertainty of pathogenicity of MEN1 variants complexifies the selection of the patients likely to benefit from specific care. OBJECTIVE: MEN1-mutated patients should be offered tailored tumor screening and genetic counseling. We present a patient with hyperparathyroidism for whom genetic analysis identified a variant of uncertain significance in the MEN1 gene (NM_130799.2): c.654G > T p.(Arg218=). Additional functional genetic tests were performed to classify the variant as pathogenic and allowed prenatal testing. DESIGN: Targeted next generation sequencing identified a synonymous variant in the MEN1 gene in a 26-year-old male with symptomatic primary hyperparathyroidism. In silico and in vitro genetic tests were performed to assess variant pathogenicity. RESULTS: Genetic testing of the proband's unaffected parents showed the variant occurred de novo. Transcript study showed a splicing defect leading to an in-frame deletion. The classification of the MEN1 variant as pathogenic confirmed the diagnosis of MEN1 and recommended an adapted medical care and follow-up. Pathogenic classification also allowed to propose a genetic counseling to the proband and his wife. Noninvasive prenatal diagnosis was performed with a personalized medicine-based protocol by detection of the paternally inherited variant in maternal plasmatic cell free DNA, using digital PCR. CONCLUSION: We showed that functional genetic analysis can help to assess the pathogenicity of a MEN1 variant with crucial consequences for medical care and genetic counseling decisions.


Asunto(s)
Hiperparatiroidismo , Neoplasia Endocrina Múltiple Tipo 1 , Pruebas Prenatales no Invasivas , Adulto , Femenino , Pruebas Genéticas , Humanos , Hiperparatiroidismo/genética , Masculino , Neoplasia Endocrina Múltiple Tipo 1/genética , Herencia Paterna , Embarazo
2.
Mol Genet Genomic Med ; 9(11): e1645, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34582124

RESUMEN

BACKGROUND: Terminal deletions of the long arm of chromosome 7 are well known and frequently associated with syndromic holoprosencephaly due to the involvement of the SHH (aliases HHG1, SMMCI, TPT, TPTPS, and MCOPCB5) gene region. However, interstitial deletions including CNTNAP2 (aliases Caspr2, KIAA0868, and NRXN4) and excluding the SHH region are less common. METHODS: We report the clinical and molecular characterization associated with pure 7q35 and 7q35q36.1 deletion in two unrelated patients as detected by oligonucleotide-based array-CGH analysis. RESULTS: The common clinical features were abnormal maternal serum screening during first-trimester pregnancy, low occipitofrontal circumference at birth, hypotonia, abnormal feet, developmental delay, impaired language development, generalized seizures, hyperactive behavior, friendly personality, and cranio-facial dysmorphism. Both deletions occurred de novo and sequencing of CNTNAP2, a candidate gene for epilepsy and autism showed absence of mutation on the contralateral allele. CONCLUSION: Combined haploinsufficiency of GALNTL5 (alias GalNAc-T5L), CUL1, SSPO (aliases SCO-spondin, KIAA0543, and FLJ36112), AOC1 (alias DAO), RHEB, and especially KMT2C (alias KIAA1506 and HALR) with monoallelic disruption of CNTNAP2 may explain neurologic abnormalities, hypotonia, and exostoses. Haploinsufficiency of PRKAG2 (aliases AAKG, AAKG2, H91620p, WPWS, and CMH6) and KCNH2 (aliases Kv11.1, HERG, and erg1) genes may be responsible of long QT syndrome observed for one patient.


Asunto(s)
Deleción Cromosómica , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 7/genética , Anomalías Craneofaciales/genética , Proteínas de Unión al ADN/genética , Discapacidades del Desarrollo/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Preescolar , Trastornos de los Cromosomas/patología , Anomalías Craneofaciales/patología , Discapacidades del Desarrollo/patología , Haploinsuficiencia , Humanos , Masculino , Pruebas Prenatales no Invasivas , Fenotipo
3.
Chemistry ; 24(43): 11211-11219, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29799661

RESUMEN

The present work shows the synthesis of nano-sized hybrid zeolitic imidazolate frameworks (ZIFs) with the rho topology based on a mixture of the linkers benzimidazole (bIm) and 4-methyl-5-imidazolecarboxaldehyde (4-m-5-ica). The hybrid ZIF was obtained by post-synthetic modification of ZIF-93 in a bIm solution. The use of different solvents, MeOH and N,N-dimethylacetamide (DMAc), and reaction times led to differences in the quantity of bIm incorporated to the framework, from 7.4 to 23 % according to solution-state NMR spectroscopy. XPS analysis showed that the mixture of linkers was also present at the surface of the particles. The inclusion of bIm to the ZIF-93 nanoparticles improved the thermal stability of the framework and also increased the hydrophobicity according to water adsorption results. N2 and CO2 adsorption experiments revealed that the hybrid material has an intermediate adsorption capacity, between those of ZIF-93 and ZIF-11. Finally, ZIF-93/11 hybrid materials were applied as fillers in polybenzimidazole (PBI) mixed matrix membranes (MMMs). These MMMs were used for H2 /CO2 separation (at 180 °C) reaching values of 207 Barrer of H2 and a H2 /CO2 selectivity of 7.7 that clearly surpassed the Robeson upper bound (corrected for this temperature).

4.
Eur J Med Genet ; 61(8): 459-464, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29549028

RESUMEN

15q24 microdeletion and microduplication syndromes are genetic disorders caused by non-allelic homologous recombination between low-copy repeats (LCRs) in the 15q24 chromosome region. Individuals with 15q24 microdeletion and microduplication syndromes share a common 1.2 Mb critical interval, spanning from LCR15q24B to LCR15q24C. Patients with 15q24 microdeletion syndrome exhibit distinct dysmorphic features, microcephaly, variable developmental delay, multiples congenital anomalies while individuals with reciprocal 15q24 microduplication syndrome show mild developmental delay, facial dysmorphism associated with skeletal and genital abnormalities. We report the first case of a 10 year-old girl presenting mild developmental delay, psychomotor retardation, epilepsy, ventricular arrhythmia, overweight and idiopathic central precocious puberty. 180K array-CGH analysis identified a 1.38 Mb heterozygous interstitial 15q24.1 BP4-BP1 microdeletion including HCN4 combined with a concomitant 2.6 Mb heterozygous distal 15q24.2q24.3 microduplication. FISH analysis showed that both deletion and duplication occurred de novo in the proband. Of note, both copy number imbalances did not involve the 1.2 Mb minimal deletion/duplication critical interval of the 15q24.1q24.2 chromosome region (74.3-75.5 Mb). Sequencing of candidate genes for epilepsy and obesity showed that the proband was hemizygous for paternal A-at risk allele of BBS4 rs7178130 and NPTN rs7171755 predisposing to obesity, epilepsy and intellectual deficits. Our study highlights the complex interaction of functional polymorphisms and/or genetic variants leading to variable clinical manifestations in patients with submicroscopic chromosomal aberrations.


Asunto(s)
Arritmias Cardíacas/genética , Trastornos de los Cromosomas/genética , Duplicación Cromosómica , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Sobrepeso/genética , Arritmias Cardíacas/patología , Niño , Deleción Cromosómica , Trastornos de los Cromosomas/patología , Cromosomas Humanos Par 15/genética , Discapacidades del Desarrollo/patología , Epilepsia/patología , Femenino , Humanos , Discapacidad Intelectual/patología , Sobrepeso/patología , Síndrome
5.
Eur J Med Genet ; 61(6): 322-328, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29366875

RESUMEN

Proximal 19p13.12 microdeletion has been rarely reported. Only five postnatal cases with intellectual disability, facial dysmorphism, branchial arch defects and overlapping deletions involving proximal 19p13.12 have been documented. Two critical intervals were previously defined: a 700 kb for branchial arch defects and a 350 kb for hypertrichosis-synophrys-protruding front teeth. We describe the first prenatal case, a fetal death in utero at 39 weeks of gestation. Agilent 180K array-CGH analysis identified a heterozygous interstitial 745 kb deletion at 19p13.12 chromosome region, encompassing both previously reported critical intervals, including at least 6 functionally relevant genes: NOTCH3, SYDE1, AKAP8, AKAP8L, WIZ and BRD4. Quantitative PCR showed that the deletion occurred de novo with a median size of 753 kb. NOTCH3 and SYDE1 were candidate genes for placental pathology whilst AKAP8, AKAP8L, WIZ and BRD4 were highly expressed in the branchial arches. Molecular characterization and sequencing of candidate genes for placental pathology and branchial arch defects were carried out in order to correlate the genotype-phenotype relationship and unravel the underlying mechanism of proximal 19p13.12 microdeletion syndrome. This case also contributes to define the novel critical interval and expand the clinical phenotype spectrum of proximal 19p13.12 microdeletion syndrome.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 19 , Enfermedades Fetales/diagnóstico , Enfermedades Fetales/genética , Anomalías Múltiples/genética , Adulto , Región Branquial/anomalías , Hibridación Genómica Comparativa , Femenino , Muerte Fetal , Genotipo , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Fenotipo , Reacción en Cadena de la Polimerasa , Embarazo , Tercer Trimestre del Embarazo , Diagnóstico Prenatal , Síndrome
6.
Case Rep Genet ; 2017: 7803136, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28465847

RESUMEN

Interstitial 17q24.1 or 17q24.2 deletions were reported after conventional cytogenetic analysis or chromosomal microarray analysis in patients presenting intellectual disability, facial dysmorphism, and/or malformations. We report on a fetus with craniofacial dysmorphism, talipes equinovarus, and syndactyly associated with a de novo 2.5 Mb 17q24.1q24.2 deletion. Among the deleted genes, KPNA2 and PSMD12 are discussed for the correlation with the fetal phenotype. This is the first case of prenatal diagnosis of 17q24.1q24.2 deletion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...