Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(8): e18628, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37554794

RESUMEN

In vitro, sterilization is one of the key components for proceeding with plant tissue cultures. Since the effectiveness of sterilization has a direct impact on the culture's final outcomes, there is a crucial need for optimization of the sterilization process. However, compared with traditional optimizing methods, the use of computational approaches through artificial intelligence-based process modeling and optimization algorithms provides a precise optimal condition for in vitro culturing. This study aimed to optimise in vitro sterilization of grape rootstock 3309C using RSM, ANN, and genetic algorithm (GA) techniques. In this context, two output responses, namely, Clean Culture and Explant Viability, were optimised using the models developed by RSM and ANN, followed by a GA, to obtain a globally optimal solution. The most influential independent factors, such as HgCl2, NaOCl, AgNO3, and immersion time, were considered input variables. The significance of the developed models was investigated with statistical and non-statistical techniques and was optimised to determine the significance of selected inputs. The optimal clean culture of 91%, and the explant viability of 89% can be obtained from 1.62% NaOCl at a 13.96 min immersion time, according to MLP-NSGAII. Sensitivity analysis revealed that the clean culture and explant viability were less sensitive to AgNO3 and more sensitive to immersion time. Results showed that the differences between the GA predicted and validation data were significant after the performance validation of predicted and optimised sterilising agents with immersion time combinations were tested. In general, GA, a potent methodology, may open the door to the development of new computational methods in plant tissue culture.

2.
Int J Phytoremediation ; 24(8): 881-892, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34618651

RESUMEN

Synthetic dyes are toxic and their release into the environment harms the ecosystem. Phycoremediation of synthetic dyes with acclimatized and native species has advantages over other methods. In this study, textile effluent-acclimatized microalgae species of Oscillatoria were grown in Bold's Basal Medium (BBM), dried, powdered using sonication, and optimized the removal malachite green (MG), using the response surface methodology (RSM). The effects of algal biosorbent concentration (AC), pH, and contact time (CT) were studied with 1 g L-1 MG in an aqueous solution, and the interaction model exerted significance (p < 0.001). The removal of MG was higher at alkaline pH (90% at pH 8.5) than at acidic pH (70% at pH 4). Under the optimized conditions of 1.2 g L-1 AC, 8.5 pH, and 30 min CT, the MG removal was documented at 90.8% with the biosorption capacity of 757 mg g-1. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis revealed the occurrence of different electronegative functional groups, aromatic vibrations, and the crystalline nature of the biosorbent. The algal sorbent exhibited a good performance of 80.9% for the removal of the crude color in real textile effluents. This microalgal sorbent is an attractive option for promoting large-scale applications.


This study used an algal (Oscillatoria sp.,) biosorbent isolated from textile effluents, and it was acclimatized to a particular effluent (synthetic dye). This biosorbent was prepared using the sonication method and sieved using a 50-µm mesh. With this novel approach of biosorbent preparation (acclimatization and sonication), this study demonstrated the maximum adsorption capacity of malachite green at 757 mg g−1 biosorbent under optimized conditions (1.2 g of biosorbent, pH 8.5, and a contact time of 30 min). This algal biosorbent and preparation methods will have a huge impact on the wastewater treatment technology and possible applications at a large scale.HIGHLIGHTSBiosorbent was prepared using sonication of Oscillatoria sp., acclimatized to textile effluent.RSM revealed the optimized conditions of 1.2 g L−1 biosordent, 8.5 pH and 30 min contact time with 90% removal of malachite green (MG)Maximum biosorption capacity of 757 mg g−1 biosorbent was observed significantlyElectronegative functional groups and the crystalline nature were liable for the biosorption.Under optimized conditions, 81% of crude color was removed from real textile effluent.


Asunto(s)
Microalgas , Oscillatoria , Contaminantes Químicos del Agua , Adsorción , Biodegradación Ambiental , Colorantes , Ecosistema , Concentración de Iones de Hidrógeno , Cinética , Colorantes de Rosanilina , Espectroscopía Infrarroja por Transformada de Fourier , Textiles , Termodinámica , Agua/análisis , Contaminantes Químicos del Agua/química
3.
Water Environ Res ; 93(8): 1276-1288, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33428305

RESUMEN

Phycoremediation of heavy metals has garnered considerable recent research interest. In this study, an indigenous microalga (Chlamydomonas sp.)-based biosorbent was employed for biosorption of Cr(VI) dissolved solids (Cr(VI)-DS), optimized using response surface methodology (RSM). The effects of microalga concentration, pH, and contact time were studied with 250 mg Cr(VI)-DS L-1 . The biosorption of Cr(VI)-DS was higher at acidic pH (94.17% at pH 4) than at alkaline conditions (68.53% at pH 10). The interaction of pH and microalga concentration exerted significant (p < 0.05) influence on the biosorption. Under the optimized parameters of 1.5 g microalga L-1 , pH 4, and contact time of 30 min, a predicted biosorption of 91.31% and biosorption capacity of 152 mg Cr(VI)-DS g-1 biomass were documented. FTIR analysis attested the electronegative surface functional groups of the microalgae biomass, bracketed together with its high biosorption potency. The study evinced the potential of the indigenous microalga for remediation of hexavalent chromium. PRACTITIONER POINTS: Indigenous Ethiopian microalga (Chlamydomonas sp.) exhibited 94% Cr(VI) abatement with biosorption capacity of 152 mg Cr(VI) g-1 . FTIR analysis of the biosorbent divulged the presence of electronegative functional groups (amino, carboxyl, hydroxyl, and carbonyl groups). Higher biosorption of Cr(VI)-DS under acidic pH (94.17% at pH 4) than alkaline pH (68.53% at pH 10). Significant (p < 0.05) interaction effect of pH and biomass concentration on the biosorption, evinced in RSM optimization 91% Cr(VI) removal achieved under optimal conditions of 1.5 g biosorbent L-1 , 30 min of contact time, and pH 4.


Asunto(s)
Chlamydomonas , Microalgas , Cromo , Concentración de Iones de Hidrógeno
4.
Genome ; 54(7): 575-85, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21745142

RESUMEN

In this study, we report genome size variations in Corchorus olitorius L. (Malvaceae s.l.), a crop species known for its morphological plasticity and broad geographical distribution, and Corchorus capsularis L., the second widely cultivated species in the genus. Flow cytometric analyses were conducted with several tissues and nuclei isolation buffers using 69 accessions of C. olitorius and 4 accessions of C. capsularis, representing different habitats and geographical origins. The mean 2C nuclear DNA content (± SD) of C. olitorius was estimated to be 0.918 ± 0.011 pg, with a minimum of 0.882 ± 0.004 pg, and a maximum of 0.942 ± 0.004 pg. All studied plant materials were found to be diploid with 2n = 14. The genome size is negatively correlated with days to flowering (r = -0.29, p < 0.05) and positively with seed surface area (r = 0.38, p < 0.05). Moreover, a statistically significant positive correlation was detected between genome size and growing elevation (r = 0.59, p < 0.001) in wild populations. The mean 2C nuclear DNA content of C. capsularis was estimated to be 0.802 ± 0.008 pg. In comparison to other economically important crop species, the genome sizes of C. olitorius and C. capsularis are much smaller, and therewith closer to that of rice. The relatively small genome sizes will be of general advantage for any efforts into genomics or sequencing approaches of these species.


Asunto(s)
Corchorus/crecimiento & desarrollo , Corchorus/genética , Variación Genética/genética , Genoma de Planta/genética , Carácter Cuantitativo Heredable , Tampones (Química) , Cromosomas de las Plantas/genética , Cariotipificación , Fenotipo , Filogeografía , Fracciones Subcelulares
5.
J Genet Genomics ; 35(6): 373-9, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18571126

RESUMEN

A study was conducted to determine the genetic diversity of 39 determinate and indeterminate tomato inbred lines collected from China, Japan, S. Korea, and USA. Using 35 SSR polymorphic markers, a total of 150 alleles were found with moderate levels of diversity, and a high number of unique alleles existing in these tomato lines. The mean number of alleles per locus was 4.3 and the average polymorphism information content (PIC) was 0.31. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering at genetic similarity value of 0.85 grouped the inbred lines into four groups, where one USA cultivar formed a separate and more distant cluster. The most similar inbred lines are from USA, both with determinate type, whereas the most different lines are from USA (Us-16) and Japan (Ja-2) with determinate and indeterminate growth habit, respectively. Clustering was consistent with the known information regarding geographical location and growth habit. The genetic distance information reported in this study might be used by breeders when planning future crosses among these inbred lines.


Asunto(s)
Cruzamiento , Variación Genética , Repeticiones de Microsatélite/genética , Solanum lycopersicum/clasificación , Solanum lycopersicum/genética , Alelos , Filogenia , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...