Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biosensors (Basel) ; 14(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38248425

RESUMEN

In response to the urgent requirement for rapid, precise, and cost-effective detection in intensive care units (ICUs) for ventilated patients, as well as the need to overcome the limitations of traditional detection methods, researchers have turned their attention towards advancing novel technologies. Among these, biosensors have emerged as a reliable platform for achieving accurate and early diagnoses. In this study, we explore the possibility of using Pyocyanin analysis for early detection of pathogens in ventilator-associated pneumonia (VAP) and lower respiratory tract infections in ventilated patients. To achieve this, we developed an electrochemical sensor utilizing a graphene oxide-copper oxide-doped MgO (GO - Cu - Mgo) (GCM) catalyst for Pyocyanin detection. Pyocyanin is a virulence factor in the phenazine group that is produced by Pseudomonas aeruginosa strains, leading to infections such as pneumonia, urinary tract infections, and cystic fibrosis. We additionally investigated the use of DNA aptamers for detecting Pyocyanin as a biomarker of Pseudomonas aeruginosa, a common causative agent of VAP. The results of this study indicated that electrochemical detection of Pyocyanin using a GCM catalyst shows promising potential for various applications, including clinical diagnostics and drug discovery.


Asunto(s)
Grafito , Neumonía Asociada al Ventilador , Piocianina , Humanos , Cobre , Óxido de Magnesio
2.
Perfusion ; : 2676591231201527, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37707960

RESUMEN

BACKGROUND: Current medical simulators for extracorporeal membrane oxygenation (ECMO) are expensive and rely on low-fidelity methodologies. This creates a challenge that demands a new approach to eliminate high costs and integrate with critical care environments, especially in light of the scarce resources and supplies available after the COVID-19 pandemic. METHODS: To address this challenge, we examined the current state-of-the-art medical simulators and collaborated closely with Hamad Medical Corporation (HMC), the primary healthcare provider in Qatar, to establish criteria for advancing the cutting-edge ECMO simulation. This article presents a comprehensive ambulatory high-realism and cost-effective ECMO simulator. RESULTS: Over the past 3 years, we have surveyed relevant literature, gathered data, and continuously developed a prototype of the system modules and the accompanying tablet application. By doing so, we have successfully addressed the issue of cost and fidelity in ECMO simulation, providing an effective tool for medical professionals to improve their understanding and treatment of patients requiring ECMO support. CONCLUSIONS: This paper will focus on presenting an overall ambulatory ECMO simulator, detailing the various sub-systems and emphasizing the modular casing of the physical components and the simulated patient monitor.

3.
J Clin Med ; 12(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37510889

RESUMEN

Aortic valve defects are among the most prevalent clinical conditions. A severely damaged or non-functioning aortic valve is commonly replaced with a bioprosthetic heart valve (BHV) via the transcatheter aortic valve replacement (TAVR) procedure. Accurate pre-operative planning is crucial for a successful TAVR outcome. Assessment of computational fluid dynamics (CFD), finite element analysis (FEA), and fluid-solid interaction (FSI) analysis offer a solution that has been increasingly utilized to evaluate BHV mechanics and dynamics. However, the high computational costs and the complex operation of computational modeling hinder its application. Recent advancements in the deep learning (DL) domain can offer a real-time surrogate that can render hemodynamic parameters in a few seconds, thus guiding clinicians to select the optimal treatment option. Herein, we provide a comprehensive review of classical computational modeling approaches, medical imaging, and DL approaches for planning and outcome assessment of TAVR. Particularly, we focus on DL approaches in previous studies, highlighting the utilized datasets, deployed DL models, and achieved results. We emphasize the critical challenges and recommend several future directions for innovative researchers to tackle. Finally, an end-to-end smart DL framework is outlined for real-time assessment and recommendation of the best BHV design for TAVR. Ultimately, deploying such a framework in future studies will support clinicians in minimizing risks during TAVR therapy planning and will help in improving patient care.

4.
Artif Intell Rev ; 56(6): 4929-5021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36268476

RESUMEN

In theory, building automation and management systems (BAMSs) can provide all the components and functionalities required for analyzing and operating buildings. However, in reality, these systems can only ensure the control of heating ventilation and air conditioning system systems. Therefore, many other tasks are left to the operator, e.g. evaluating buildings' performance, detecting abnormal energy consumption, identifying the changes needed to improve efficiency, ensuring the security and privacy of end-users, etc. To that end, there has been a movement for developing artificial intelligence (AI) big data analytic tools as they offer various new and tailor-made solutions that are incredibly appropriate for practical buildings' management. Typically, they can help the operator in (i) analyzing the tons of connected equipment data; and; (ii) making intelligent, efficient, and on-time decisions to improve the buildings' performance. This paper presents a comprehensive systematic survey on using AI-big data analytics in BAMSs. It covers various AI-based tasks, e.g. load forecasting, water management, indoor environmental quality monitoring, occupancy detection, etc. The first part of this paper adopts a well-designed taxonomy to overview existing frameworks. A comprehensive review is conducted about different aspects, including the learning process, building environment, computing platforms, and application scenario. Moving on, a critical discussion is performed to identify current challenges. The second part aims at providing the reader with insights into the real-world application of AI-big data analytics. Thus, three case studies that demonstrate the use of AI-big data analytics in BAMSs are presented, focusing on energy anomaly detection in residential and office buildings and energy and performance optimization in sports facilities. Lastly, future directions and valuable recommendations are identified to improve the performance and reliability of BAMSs in intelligent buildings.

5.
Artif Organs ; 46(11): 2135-2146, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35578949

RESUMEN

BACKGROUND: Training is an essential aspect of providing high-quality treatment and ensuring patient safety in any medical practice. Because extracorporeal membrane oxygenation (ECMO) is a complicated operation with various elements, variables, and irregular situations, doctors must be experienced and knowledgeable about all conventional protocols and emergency procedures. The conventional simulation approach has a number of limitations. The approach is intrinsically costly since it relies on disposable medical equipment (i.e., oxygenators, heat exchangers, and pumps) that must be replaced regularly due to the damage caused by the liquid used to simulate blood. The oxygenator, which oxygenates the blood through a tailored membrane in ECMO, acts as a replacement for the patient's natural lung. For the context of simulation-based training (SBT) oxygenators are often expensive and cannot be recycled owing to contamination issues. METHODS: Consequently, it is advised that the training process include a simulated version of oxygenators to optimize reusability and decrease training expenses. Toward this goal, this article demonstrates a mock oxygenator for ECMO SBT, designed to precisely replicate the real machine structure and operation. RESULTS: The initial model was reproduced using 3D modeling and printing. Additionally, the mock oxygenator could mimic frequent events such as pump noise and clotting. Furthermore, the oxygenator is integrated with the modular ECMO simulator using cloud-based communication technology that goes in hand with the internet of things technology to provide remote control via an instructor tablet application. CONCLUSIONS: The final 3D modeled oxygenator body was tested and integrated with the other simulation modules at Hamad Medical Corporation with several participants to evaluate the effectiveness of the training session.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Entrenamiento Simulado , Humanos , Oxigenación por Membrana Extracorpórea/métodos , Oxigenadores , Pulmón , Simulación por Computador , Oxigenadores de Membrana
6.
Membranes (Basel) ; 11(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34677510

RESUMEN

(1) Background: Simulation-based training (SBT) is the practice of using hands-on training to immerse learners in a risk-free and high-fidelity environment. SBT is used in various fields due to its risk-free benefits from a safety and an economic perspective. In addition, SBT provides immersive training unmatched by traditional teaching the interactive visualization needed in particular scenarios. Medical SBT is a prevalent practice as it allows for a platform for learners to learn in a risk-free and cost-effective environment, especially in critical care, as mistakes could easily cause fatalities. An essential category of care is human circulatory system care (HCSC), which includes essential-to-simulate complications such as cardiac arrest. (2) Methods: In this paper, a deeper look onto existing human circulatory system medical SBT is presented to assess and highlight the important features that should be present with a focus on extracorporeal membrane oxygenation cannulation (ECMO) simulators and cardiac catheterization. (3) Results: A list of features is also suggested for an ideal simulator to bridge the gap between medical studies and simulator engineering, followed by a case study of an ECMO SBT system design. (4) Conclusions: a collection and discussion of existing work for HCSC SBT are portrayed as a guide for researchers and practitioners to compare existing SBT and recreating them effectively.

7.
Membranes (Basel) ; 11(7)2021 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34357170

RESUMEN

Simulators for extracorporeal membrane oxygenation (ECMO) have problems of bulky devices and low-fidelity methodologies. Hence, ongoing efforts for optimizing modern solutions focus on minimizing expenses and blending training with the intensive care unit. This is particularly evident following the coronavirus pandemic, where economic resources have been extensively cut. In this paper, as a part of an ECMO simulator for training management, an advance thermochromic ink system for medical blood simulation is presented. The system was developed and enhanced as a prototype with successful and reversible transitions between dark and bright red blood color to simulate blood oxygenation and deoxygenation in ECMO training sessions.

8.
Membranes (Basel) ; 11(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073086

RESUMEN

Despite many advancements in extracorporeal membrane oxygenation (ECMO), the procedure is still correlated with a high risk of patient complications. Simulation-based training provides the opportunity for ECMO staff to practice on real-life scenarios without exposing ECMO patients to medical errors while practicing. At Hamad Medical Corporation (HMC) in Qatar, there is a critical need of expert ECMO staff. Thus, a modular ECMO simulator is being developed to enhance the training process in a cost-effective manner. This ECMO simulator gives the instructor the ability to control the simulation modules and run common simulation scenarios through a tablet application. The core modules of the simulation system are placed in the patient unit. The unit is designed modularly such that more modules can be added throughout the simulation sessions to increase the realism of the simulation sessions. The new approach is to enclose the patient unit in a trolley, which is custom-designed and made to include all the components in a modular fashion. Each module is enclosed in a separate box and then mounted to the main blood simulation loop box using screws, quick connect/disconnect liquid fittings, and electrical plugs. This method allows fast upgrade and maintenance for each module separately as well as upgrading modules easily without modifying the trolley's design. The prototype patient unit has been developed for portability, maintenance, and extensibility. After implementation and testing, the prototype has proven to successfully simulate the main visual and audio cues of the real emergency scenarios, while keeping costs to a minimum.

9.
Health Informatics J ; 27(1): 1460458220982640, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33570009

RESUMEN

Internet of Medical Things (IoMT) systems are envisioned to provide high-quality healthcare services to patients in the comfort of their home, utilizing cutting-edge Internet of Things (IoT) technologies and medical sensors. Patient comfort and willingness to participate in such efforts is a prominent factor for their adoption. As IoT technology has provided solutions for all technical issues, patient concerns are those that seem to restrict their wider adoption. To enhance patient awareness of the system properties and enhance their willingness to adopt IoMT solutions, this paper presents a novel methodology to integrate patient concerns in the design requirements of such systems. It comprises a number of straightforward steps that an IoMT designer can follow, starting from identifying patient concerns, incorporating them in system design requirements as criticalities, proceeding to system implementation and testing, and finally, verifying that it fulfills the concerns of the patients. To showcase the effectiveness of the proposed methodology, the paper applies it in the design and implementation of a fall detection system for elderly patients remotely monitored in their homes.


Asunto(s)
Internet de las Cosas , Accidentes por Caídas/prevención & control , Anciano , Humanos , Monitoreo Fisiológico
10.
J Biomed Inform ; 109: 103521, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32745621

RESUMEN

Internet of Things (IoT) technologies have been applied to various fields such as manufacturing, automobile industry and healthcare. IoT-based healthcare has a significant impact on real-time remote monitoring of patients' health and consequently improving treatments and reducing healthcare costs. In fact, IoT has made healthcare more reliable, efficient, and accessible. Two major drawbacks which IoT suffers from can be expressed as: first, thelimited battery capacityof thesensorsis quickly depleted due to the continuous stream of data; second, the dependence of the system on the cloud for computations and processing causes latency in data transmission which is not accepted in real-time monitoring applications. This research is conducted to develop a real-time, secure, and energy-efficient platform which provides a solution for reducing computation load on the cloud and diminishing data transmission delay. In the proposed platform, the sensors utilize a state-of-the-art power saving technique known as Compressive Sensing (CS). CS allows sensors to retrieve the sensed data using fewer measurements by sending a compressed signal. In this framework, the signal reconstruction and processing are computed locally on a Heterogeneous Multicore Platform (HMP) device to decrease the dependency on the cloud. In addition, a framework has been implemented to control the system, set different parameters, display the data as well as send live notifications to medical experts through the cloud in order to alert them of any eventual hazardous event or abnormality and allow quick interventions. Finally, a case study of the system is presented demonstrating the acquisition and monitoring of the data for a given subject in real-time. The obtained results reveal that the proposed solution reduces 15.4% of energy consumption in sensors, that makes this prototype a good candidate for IoT employment in healthcare.


Asunto(s)
Internet de las Cosas , Anciano , Atención a la Salud , Humanos
11.
Int J Comput Assist Radiol Surg ; 15(4): 629-639, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32130645

RESUMEN

PURPOSE: Cerebral aneurysms are one of the prevalent cerebrovascular disorders in adults worldwide and caused by a weakness in the brain artery. The most impressive treatment for a brain aneurysm is interventional radiology treatment, which is extremely dependent on the skill level of the radiologist. Hence, accurate detection and effective therapy for cerebral aneurysms still remain important clinical challenges. In this work, we have introduced a pipeline for cerebral blood flow simulation and real-time visualization incorporating all aspects from medical image acquisition to real-time visualization and steering. METHODS: We have developed and employed an improved version of HemeLB as the main computational core of the pipeline. HemeLB is a massive parallel lattice-Boltzmann fluid solver optimized for sparse and complex geometries. The visualization component of this pipeline is based on the ray marching method implemented on CUDA capable GPU cores. RESULTS: The proposed visualization engine is evaluated comprehensively and the reported results demonstrate that it achieves significantly higher scalability and sites updates per second, indicating higher update rate of geometry sites' values, in comparison with the original HemeLB. This proposed engine is more than two times faster and capable of 3D visualization of the results by processing more than 30 frames per second. CONCLUSION: A reliable modeling and visualizing environment for measuring and displaying blood flow patterns in vivo, which can provide insight into the hemodynamic characteristics of cerebral aneurysms, is presented in this work. This pipeline increases the speed of visualization and maximizes the performance of the processing units to do the tasks by breaking them into smaller tasks and working with GPU to render the images. Hence, the proposed pipeline can be applied as part of clinical routines to provide the clinicians with the real-time cerebral blood flow-related information.


Asunto(s)
Circulación Cerebrovascular/fisiología , Imagenología Tridimensional/métodos , Aneurisma Intracraneal/diagnóstico por imagen , Simulación por Computador , Hemodinámica/fisiología , Humanos , Aneurisma Intracraneal/fisiopatología , Modelos Neurológicos
12.
Perfusion ; 35(2): 110-116, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31303136

RESUMEN

BACKGROUND: Extracorporeal membrane oxygenation relies heavily on didactic teaching, emphasizing on essential cognitive skills, but overlooking core behavioral skills such as leadership and communication. Therefore, simulation-based training has been adopted to instill clinical knowledge through immersive experiences. Despite simulation-based training's effectiveness, training opportunities are lessened due to high costs. This is where screen-based simulators come into the scene as affordable and realistic alternatives. AIM: This article evaluates the educational efficacy of ECMOjo, an open-source screen-based extracorporeal membrane oxygenation simulator that aims to replace extracorporeal membrane oxygenation didactic instruction in an interactive and cost-effective manner. METHOD: A prospective cohort skills acquisition study was carried out. A total of 44 participants were pre-assessed, divided into two groups, where the first group received traditional didactic teaching, and the second used ECMOjo. Participants were then evaluated through a wet lab assessment and two questionnaires. RESULTS: The obtained results indicate that the two assessed groups show no statistically significant differences in knowledge and efficacy. Hence, ECMOjo is considered an alternative to didactic teaching as per the learning outcomes. CONCLUSION: The present findings show no significant dissimilarities between ECMOjo and didactic classroom-based teaching. Both methods are very comparable in terms of the learner's reported self-efficacy and complementary to mannequin-based simulations.


Asunto(s)
Oxigenación por Membrana Extracorpórea/métodos , Entrenamiento Simulado/métodos , Estudios de Cohortes , Simulación por Computador , Femenino , Humanos , Masculino , Estudios Prospectivos
13.
Int J Comput Assist Radiol Surg ; 14(12): 2165-2176, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31309385

RESUMEN

BACKGROUND AND OBJECTIVES: Surgical procedures such as laparoscopic and robotic surgeries are popular since they are invasive in nature and use miniaturized surgical instruments for small incisions. Tracking of the instruments (graspers, needle drivers) and field of view from the stereoscopic camera during surgery could further help the surgeons to remain focussed and reduce the probability of committing any mistakes. Tracking is usually preferred in computerized video surveillance, traffic monitoring, military surveillance system, and vehicle navigation. Despite the numerous efforts over the last few years, object tracking still remains an open research problem, mainly due to motion blur, image noise, lack of image texture, and occlusion. Most of the existing object tracking methods are time-consuming and less accurate when the input video contains high volume of information and more number of instruments. METHODS: This paper presents a variational framework to track the motion of moving objects in surgery videos. The key contributions are as follows: (1) A denoising method using stochastic resonance in maximal overlap discrete wavelet transform is proposed and (2) a robust energy functional based on Bhattacharyya coefficient to match the target region in the first frame of the input sequence with the subsequent frames using a similarity metric is developed. A modified affine transformation-based registration is used to estimate the motion of the features following an active contour-based segmentation method to converge the contour resulted from the registration process. RESULTS AND CONCLUSION: The proposed method has been implemented on publicly available databases; the results are found satisfactory. Overlap index (OI) is used to evaluate the tracking performance, and the maximum OI is found to be 76% and 88% on private data and public data sequences.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/métodos , Aneurisma Intracraneal/cirugía , Cirugía Asistida por Computador/métodos , Algoritmos , Humanos , Movimiento (Física)
14.
Perfusion ; 34(3): 183-194, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30340447

RESUMEN

INTRODUCTION: Patients under the error-prone and complication-burdened extracorporeal membrane oxygenation (ECMO) are looked after by a highly trained, multidisciplinary team. Simulation-based training (SBT) affords ECMO centers the opportunity to equip practitioners with the technical dexterity required to manage emergencies. The aim of this article is to review ECMO SBT activities and technology followed by a novel solution to current challenges. ECMO SIMULATION: The commonly-used simulation approach is easy-to-build as it requires a functioning ECMO machine and an altered circuit. Complications are simulated through manual circuit manipulations. However, scenario diversity is limited and often lacks physiological and/or mechanical authenticity. It is also expensive to continuously operate due to the consumption of highly specialized equipment. TECHNOLOGICAL AID: Commercial extensions can be added to enable remote control and to automate circuit manipulation, but do not improve on the realism or cost-effectiveness. A MODULAR ECMO SIMULATOR: To address those drawbacks, we are developing a standalone modular ECMO simulator that employs affordable technology for high-fidelity simulation.


Asunto(s)
Oxigenación por Membrana Extracorpórea/educación , Entrenamiento Simulado/métodos , Competencia Clínica , Diseño de Equipo , Oxigenación por Membrana Extracorpórea/efectos adversos , Oxigenación por Membrana Extracorpórea/instrumentación , Oxigenación por Membrana Extracorpórea/métodos , Humanos
15.
Perfusion ; 34(2): 106-115, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30192704

RESUMEN

INTRODUCTION: Extracorporeal membrane oxygenation (ECMO) training programs employ real ECMO components, causing them to be extremely expensive while offering little realism in terms of blood oxygenation and pressure. To overcome those limitations, we are developing a standalone modular ECMO simulator that reproduces ECMO's visual, audio and haptic cues using affordable mechanisms. We present a central component of this simulator, capable of visually reproducing blood oxygenation color change using thermochromism. METHODS: Our simulated ECMO circuit consists of two physically distant modules, responsible for adding and withdrawing heat from a thermochromic fluid. This manipulation of heat creates a temperature difference between the fluid in the drainage line and the fluid in the return line of the circuit and, hence, a color difference. RESULTS: Thermochromic ink mixed with concentrated dyes was used to create a recipe for a realistic and affordable blood-colored fluid. The implemented "ECMO circuit" reproduced blood's oxygenation and deoxygenation color difference or lack thereof. The heat control circuit costs 300 USD to build and the thermochromic fluid costs 40 USD/L. During a ten-hour in situ demonstration, nineteen ECMO specialists rated the fidelity of the oxygenated and deoxygenated "blood" and the color contrast between them as highly realistic. CONCLUSIONS: Using low-cost yet high-fidelity simulation mechanisms, we implemented the central subsystem of our modular ECMO simulator, which creates the look and feel of an ECMO circuit without using an actual one.


Asunto(s)
Oxigenación por Membrana Extracorpórea/métodos , Oxígeno/metabolismo , Oxigenación por Membrana Extracorpórea/instrumentación , Calefacción/instrumentación , Calefacción/métodos , Humanos
16.
Perfusion ; 33(7): 568-576, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29790824

RESUMEN

INTRODUCTION/AIM: The patient's condition and high-risk nature of extracorporeal membrane oxygenation (ECMO) therapy force clinical services to ensure clinicians are properly trained and always ready to deal effectively with critical situations. Simulation-based education (SBE), from the simplest approaches to the most immersive modalities, helps promote optimum individual and team performance. The risks of SBE are negative learning, inauthenticity in learning and over-reliance on the participants' suspension of disbelief. This is especially relevant to ECMO SBE as circuit/patient interactions are difficult to fully simulate without confusing circuit alterations. METHODS: Our efforts concentrate on making ECMO simulation easier and more realistic in order to reduce the current gap there is between SBE and real ECMO patient care. Issues to be overcome include controlling the circuit pressures, system failures, patient issues, blood colour and cost factors. Key to our developments are the hospital-university collaboration and research funding. RESULTS: A prototype ECMO simulator has been developed that allows for realistic ECMO SBE. The system emulates the ECMO machine interface with remotely controllable pressure parameters, haemorrhaging, line chattering, air bubble noise and simulated blood colour change. CONCLUSION: The prototype simulator allows the simulation of common ECMO emergencies through innovative solutions that enhance the fidelity of ECMO SBE and reduce the requirement for suspension of disbelief from participants. Future developments will encompass the patient cannulation aspect.


Asunto(s)
Oxigenación por Membrana Extracorpórea/efectos adversos , Oxigenación por Membrana Extracorpórea/métodos , Oxigenación por Membrana Extracorpórea/mortalidad , Humanos , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...