Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arthritis Rheumatol ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566346

RESUMEN

OBJECTIVE: Fibroblast-like synoviocytes (FLS) contribute to the pathogenesis of rheumatoid arthritis (RA), in part due to activation of the proinflammatory transcription factor NF-κB. Neddylation is modulated by the negative regulator of ubiquitin-like protein (NUB) 1. We determined whether NUB1 and neddylation are aberrant in the models with RA FLS, thereby contributing to their aggressive phenotype. METHODS: Models with RA or osteoarthritis (OA) FLS were obtained from arthroplasty synovia. Real-time quantitative polymerase chain reaction and Western blot analysis assessed gene and protein expression, respectively. NUB1 was overexpressed using an expression vector. NF-κB activation was assessed by stimulating FLS with interleukin (IL)-1ß. Neddylation inhibitor (MLN4924) and proteasome inhibitor were used in migration and gene expression assays. MLN4924 was used in the model with K/BxN serum-transfer arthritis. RESULTS: Enhanced H3K27ac and H3K27me3 peaks were observed in the NUB1 promoter in the OA FLS compared with the RA FLS. NUB1 was constitutively expressed by FLS, but induction by IL-1ß was significantly greater in the OA FLS. The ratio of neddylated cullin (CUL) 1 to nonneddylated CUL1 was lower in the OA FLS than the RA FLS. NUB1 overexpression decreased NF-κB nuclear translocation and IL-6 messenger RNA (mRNA) in IL-1ß-stimulated the RA FLS. MLN4924 decreased CUL1 neddylation, NF-κB nuclear translocation, and IL-6 mRNA in IL-1ß-stimulated the RA FLS. MLN4924 significantly decreased arthritis severity in the model with K/BxN serum-transfer arthritis. CONCLUSION: CUL1 neddylation and NUB1 induction is dysregulated in the models with RA, which increases FLS activation. Inhibition of neddylation is an effective therapy in an animal model of arthritis. These data suggest that the neddylation system contributes to the pathogenesis of RA and that regulation of neddylation could be a novel therapeutic approach.

2.
Arthritis Rheumatol ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556917

RESUMEN

OBJECTIVE: Rheumatoid arthritis (RA) is an autoimmune disease in which the joint lining or synovium becomes highly inflamed and majorly contributes to disease progression. Understanding pathogenic processes in RA synovium is critical for identifying therapeutic targets. We performed laser capture microscopy (LCM) followed by RNA sequencing (LCM-RNAseq) to study regional transcriptomes throughout RA synovium. METHODS: Synovial lining, sublining, and vessel samples were captured by LCM from seven patients with RA and seven patients with osteoarthritis (OA). RNAseq was performed on RNA extracted from captured tissue. Principal component analysis was performed on the sample set by disease state. Differential expression analysis was performed between disease states based on log2 fold change and q value parameters. Pathway analysis was performed using the Reactome Pathway Database on differentially expressed genes among disease states. Significantly enriched pathways in each synovial region were selected based on the false discovery rate. RESULTS: RA and OA transcriptomes were distinguishable by principal component analysis. Pairwise comparisons of synovial lining, sublining, and vessel samples between RA and OA revealed substantial differences in transcriptional patterns throughout the synovium. Hierarchical clustering of pathways based on significance revealed a pattern of association between biologic function and synovial topology. Analysis of pathways uniquely enriched in each region revealed distinct phenotypic abnormalities. As examples, RA lining samples were marked by anomalous immune cell signaling, RA sublining samples were marked by aberrant cell cycle, and RA vessel samples were marked by alterations in heme scavenging. CONCLUSION: LCM-RNAseq confirms reported transcriptional differences between the RA synovium and the OA synovium and provides evidence supporting a relationship between synovial topology and molecular anomalies in RA.

3.
J Pharmacol Exp Ther ; 387(2): 180-187, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37714687

RESUMEN

Interleukin (IL)-23 exists as a heterodimer consisting of p19 and p40 and is a key cytokine for promoting inflammatory responses in a variety of target organs. IL-23 plays a key role in the differentiation and maintenance of T helper 17 cells, and deregulation of IL-23 can result in autoimmune pathologies of the skin, lungs, and gut. This study describes the generation and characterization of mirikizumab (miri), a humanized IgG4 monoclonal antibody directed against the p19 subunit of IL-23. Miri binds human and cynomolgus monkey IL-23 with high affinity and binds rabbit IL-23 weakly but does not bind to rodent IL-23 or the other IL-23 family members IL-12, IL-27, or IL-35. Miri effectively inhibits the interaction of IL-23 with its receptor, and potently blocks IL-23-induced IL-17 production in cell-based assays while preserving the function of IL-12. In both local and systemic in vivo mouse models, miri blocked IL-23-induced keratin mRNA or IL-17 production, respectively. These data provide a comprehensive preclinical characterization of miri, for which efficacy and safety have been demonstrated in human clinical trials for psoriasis, ulcerative colitis, and Crohn's disease. SIGNIFICANCE STATEMENT: This article describes the generation and characterization of mirikizumab, a high affinity, neutralizing IgG4 variant monoclonal antibody that is under development for the treatment of ulcerative colitis and Crohn's disease. Neutralization of interleukin (IL)-23 is achieved by preventing the binding of IL-23 p19 subunit to the IL-23 receptor and does not affect the IL-12 pathway.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Humanos , Animales , Ratones , Conejos , Interleucina-23 , Colitis Ulcerosa/tratamiento farmacológico , Interleucina-17 , Subunidad p19 de la Interleucina-23 , Macaca fascicularis , Interleucinas , Anticuerpos Monoclonales , Interleucina-12/uso terapéutico , Inmunoglobulina G
4.
Front Immunol ; 14: 1157265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415982

RESUMEN

IL-21 is a multifunctional cytokine linked with the pathophysiology of several autoimmune diseases, including type 1 diabetes. In this study, our aim was to examine plasma IL-21 levels in individuals at different stages of type 1 diabetes progression. We measured plasma IL-21 levels, as well as levels of other key pro-inflammatory cytokines (IL-17A, TNF-α and IL-6), from 37 adults with established type 1 diabetes and 46 healthy age-matched adult controls, as well as from 53 children with newly diagnosed type 1 diabetes, 48 at-risk children positive for type 1 diabetes-associated autoantibodies and 123 healthy age-matched pediatric controls using the ultrasensitive Quanterix SiMoA technology. Adults with established type 1 diabetes had higher plasma IL-21 levels compared to healthy controls. However, the plasma IL-21 levels showed no statistically significant correlation with clinical variables, such as BMI, C-peptide, HbA1c, or hsCRP levels, evaluated in parallel. In children, plasma IL-21 levels were almost ten times higher than in adults. However, no significant differences in plasma IL-21 levels were detected between healthy children, autoantibody-positive at-risk children, and children with newly diagnosed type 1 diabetes. In conclusion, plasma IL-21 levels in adults with established type 1 diabetes were increased, which may be associated with autoimmunity. The physiologically high plasma IL-21 levels in children may, however, reduce the potential of IL-21 as a biomarker for autoimmunity in pediatric subjects.


Asunto(s)
Diabetes Mellitus Tipo 1 , Interleucina-17 , Adulto , Niño , Humanos , Autoanticuerpos , Biomarcadores , Citocinas , Interleucinas
5.
Dermatol Ther (Heidelb) ; 13(7): 1535-1547, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37310643

RESUMEN

INTRODUCTION: IL-13 is the primary upregulated cytokine in atopic dermatitis (AD) skin and is the pathogenic mediator driving AD pathophysiology. Lebrikizumab, tralokinumab and cendakimab are therapeutic monoclonal antibodies (mAb) that target IL-13. METHODS: We undertook studies to compare in vitro binding affinities and cell-based functional activities of lebrikizumab, tralokinumab and cendakimab. RESULTS: Lebrikizumab bound IL-13 with higher affinity (as determined using surface plasma resonance) and slower off-rate. It was more potent in neutralizing IL-13-induced effects in STAT6 reporter and primary dermal fibroblast periostin secretion assays than either tralokinumab or cendakimab. Live imaging confocal microscopy was employed to determine the mAb effects on IL-13 internalization into cells via the decoy receptor IL-13Rα2, using A375 and HaCaT cells. The results showed that only the IL-13/lebrikizumab complex was internalized and co-localized with lysosomes, whereas IL-13/tralokinumab or IL-13/cendakimab complexes did not internalize. CONCLUSION: Lebrikizumab is a potent, neutralizing high-affinity antibody with a slow disassociation rate from IL-13. Additionally, lebrikizumab does not interfere with IL-13 clearance. Lebrikizumab has a different mode of action to both tralokinumab and cendakimab, possibly contributing to the clinical efficacy observed by lebrikizumab in Ph2b/3 AD studies.

6.
Front Immunol ; 13: 1002629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439150

RESUMEN

Immune mediated inflammatory diseases (IMIDs) are a heterogeneous group of debilitating, multifactorial and unrelated conditions featured by a dysregulated immune response leading to destructive chronic inflammation. The immune dysregulation can affect various organ systems: gut (e.g., inflammatory bowel disease), joints (e.g., rheumatoid arthritis), skin (e.g., psoriasis, atopic dermatitis), resulting in significant morbidity, reduced quality of life, increased risk for comorbidities, and premature death. As there are no reliable disease progression and therapy response biomarkers currently available, it is very hard to predict how the disease will develop and which treatments will be effective in a given patient. In addition, a considerable proportion of patients do not respond sufficiently to the treatment. ImmUniverse is a large collaborative consortium of 27 partners funded by the Innovative Medicine Initiative (IMI), which is sponsored by the European Union (Horizon 2020) and in-kind contributions of participating pharmaceutical companies within the European Federation of Pharmaceutical Industries and Associations (EFPIA). ImmUniverse aims to advance our understanding of the molecular mechanisms underlying two immune-mediated diseases, ulcerative colitis (UC) and atopic dermatitis (AD), by pursuing an integrative multi-omics approach. As a consequence of the heterogeneity among IMIDs patients, a comprehensive, evidence-based identification of novel biomarkers is necessary to enable appropriate patient stratification that would account for the inter-individual differences in disease severity, drug efficacy, side effects or prognosis. This would guide clinicians in the management of patients and represent a major step towards personalized medicine. ImmUniverse will combine the existing and novel advanced technologies, including multi-omics, to characterize both the tissue microenvironment and blood. This comprehensive, systems biology-oriented approach will allow for identification and validation of tissue and circulating biomarker signatures as well as mechanistic principles, which will provide information about disease severity and future disease progression. This truly makes the ImmUniverse Consortium an unparalleled approach.


Asunto(s)
Dermatitis Atópica , Medicina de Precisión , Humanos , Calidad de Vida , Biomarcadores , Progresión de la Enfermedad
7.
PLoS One ; 17(9): e0273323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36083883

RESUMEN

BACKGROUND: The humoral response to SARS-CoV-2 can provide immunity and prevent reinfection. However, less is known about how the diversity, magnitude, and length of the antibody response after a primary infection is associated with symptoms, post-infection immunity, and post-vaccinated immunity. METHODS: Cook County Health employees provided blood samples and completed an online survey 8-10 weeks after a PCR-confirmed positive SARS-CoV-2 test (pre-vaccinated, N = 41) and again, 1-4 weeks after completion of a 2-dose series mRNA BNT162b2 COVID-19 vaccine (post-vaccinated, N = 27). Associations were evaluated between SARS-CoV-2 antibody titers, participant demographics, and clinical characteristics. Antibody titers and angiotensin-converting enzyme 2 (ACE2) neutralization were compared before and after the mRNA BNT162b2 COVID-19 vaccine. RESULTS: Antibody titers to the spike protein (ST4), receptor binding domain (RBD), and RBD mutant D614G were significantly associated with anosmia and ageusia, cough, and fever. Spike protein antibody titers and ACE2 neutralization were significantly higher in participants that presented with these symptoms. Antibody titers to the spike protein N-terminal domain (NTD), RBD, and ST4, and ACE2 IC50 were significantly higher in all post-vaccinated participant samples compared to pre-vaccinated participant sample, and not dependent on previously reported symptoms. CONCLUSIONS: Spike protein antibody titers and ACE2 neutralization are associated with the presentation of anosmia and ageusia, cough, and fever after SARS-CoV-2 infection. Symptom response to previous SARS-CoV-2 infection did not influence the antibody response from subsequent vaccination. These results suggest a relationship between infection severity and the magnitude of the immune response and provide meaningful insights into COVID-19 immunity according to discrete symptom presentation.


Asunto(s)
Ageusia , COVID-19 , Enzima Convertidora de Angiotensina 2 , Anosmia , Anticuerpos Antivirales , Formación de Anticuerpos , Vacuna BNT162 , COVID-19/diagnóstico , COVID-19/prevención & control , Vacunas contra la COVID-19 , Tos , Humanos , ARN Mensajero/genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
8.
Sci Transl Med ; 14(655): eabn3041, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35679357

RESUMEN

As the coronavirus disease 2019 (COVID-19) pandemic evolves and vaccine rollout progresses, the availability and demand for monoclonal antibodies for the prevention and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also accelerating. This longitudinal serological study evaluated the magnitude and potency of the endogenous antibody response to COVID-19 vaccination in participants who first received a COVID-19 monoclonal antibody in a prevention study. Over the course of 6 months, serum samples were collected from a population of nursing home residents and staff enrolled in a clinical trial who were randomized to either bamlanivimab treatment or placebo. In an unplanned component of this trial, a subset of these participants was subsequently fully vaccinated with two doses of either SpikeVax (Moderna) or Comirnaty (BioNTech/Pfizer) COVID-19 mRNA vaccines. This post hoc analysis assessed the immune response to vaccination for 135 participants without prior SARS-CoV-2 infection. Antibody titers and potency were assessed using three assays against SARS-CoV-2 proteins that bamlanivimab does not efficiently bind to, thereby reflecting the endogenous antibody response. All bamlanivimab and placebo recipients mounted a robust immune response to full COVID-19 vaccination, irrespective of age, risk category, and vaccine type with any observed differences of uncertain clinical importance. These findings are pertinent for informing public health policy with results that suggest that the benefit of receiving COVID-19 vaccination at the earliest opportunity outweighs the minimal effect on the endogenous immune response due to prior prophylactic COVID-19 monoclonal antibody infusion.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2 , Vacunación
9.
J Transl Med ; 20(1): 134, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35303909

RESUMEN

BACKGROUND: A thorough understanding of a patient's inflammatory response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is crucial to discerning the associated, underlying immunological processes and to the selection and implementation of treatment strategies. Defining peripheral blood biomarkers relevant to SARS-CoV-2 infection is fundamental to detecting and monitoring this systemic disease. This safety-focused study aims to monitor and characterize the immune response to SARS-CoV-2 infection via analysis of peripheral blood and nasopharyngeal swab samples obtained from patients hospitalized with Coronavirus disease 2019 (COVID-19), in the presence or absence of bamlanivimab treatment. METHODS: 23 patients hospitalized with COVID-19 were randomized to receive a single dose of the neutralizing monoclonal antibody, bamlanivimab (700 mg, 2800 mg or 7000 mg) or placebo, at study initiation (Clinical Trial; NCT04411628). Serum samples and nasopharyngeal swabs were collected at multiple time points over 1 month. A Proximity Extension Array was used to detect inflammatory profiles from protein biomarkers in the serum of hospitalized COVID-19 patients relative to age/sex-matched healthy controls. RNA sequencing was performed on nasopharyngeal swabs. A Luminex serology assay and Elecsys® Anti-SARS-CoV-2 immunoassay were used to detect endogenous antibody formation and to monitor seroconversion in each cohort over time. A mixed model for repeated measures approach was used to analyze changes in serology and serum proteins over time. RESULTS: Levels of IL-6, CXCL10, CXCL11, IFNγ and MCP-3 were > fourfold higher in the serum of patients with COVID-19 versus healthy controls and linked with observations of inflammatory and viral-induced interferon response genes detected in nasopharyngeal swab samples from the same patients. While IgA and IgM titers peaked around 7 days post-dose, IgG titers remained high, even after 28 days. Changes in biomarkers over time were not significantly different between the bamlanivimab and placebo groups. CONCLUSIONS: Similarities observed between nasopharyngeal gene expression patterns and peripheral blood biomarker profiles reveal a connection between the circulation and processes in the nasopharyngeal cavity, reinforcing the potential utility of systemic blood biomarker profiling for therapeutic monitoring of patient response. Serological antibody responses in patients correlated closely with reductions in the COVID-19 inflammatory protein biomarker signature. Bamlanivimab did not affect the biomarker dynamics in this hospitalized patient population.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Biomarcadores , Expresión Génica , Humanos , Nasofaringe , SARS-CoV-2
10.
ACR Open Rheumatol ; 4(4): 288-299, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34963199

RESUMEN

OBJECTIVE: Fibroblast-like synoviocytes (FLS) play a pivotal role in rheumatoid arthritis (RA) by contributing to synovial inflammation and progressive joint damage. An imprinted epigenetic state is associated with the FLS aggressive phenotype. We identified CASP8 (encoding for caspase-8) as a differentially marked gene and evaluated its pathogenic role in RA FLSs. METHODS: RA FLS lines were obtained from synovial tissues at arthroplasty and used at passage 5-8. Caspase-8 was silenced using small interfering RNA, and its effect was determined in cell adhesion, migration and invasion assays. Quantitative reverse transcription PCR and western blot were used to assess gene and protein expression, respectively. A caspase-8 selective inhibitor was used determine the role of enzymatic activity on FLS migration and invasion. Caspase-8 isoform transcripts and epigenetic marks in FLSs were analyzed in FLS public databases. Crystal structures of caspase-8B and G were determined. RESULTS: Caspase-8 deficiency in RA FLSs reduced cell adhesion, migration, and invasion independent of its catalytic activity. Epigenetic and transcriptomic analyses of RA FLSs revealed that a specific caspase-8 isoform, variant G, is the dominant isoform expressed (~80% of total caspase-8) and induced by PDGF. The crystal structures of caspase-8 variant G and B were identical except for a unique unstructured 59 amino acid N-terminal domain in variant G. Selective knockdown of caspase-8G was solely responsible for the effects of caspase-8 on calpain activity and cell invasion in FLS. CONCLUSION: Blocking caspase-8 variant G could decrease cell invasion in diseases like RA without the potential deleterious effects of nonspecific caspase-8 inhibition.

11.
J Clin Pathol ; 75(9): 636-642, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34353876

RESUMEN

AIMS AND METHODS: Accurate protein measurements using formalin-fixed biopsies are needed to improve disease characterisation. This feasibility study used targeted and global mass spectrometry (MS) to interrogate a spectrum of disease severities using 19 ulcerative colitis (UC) biopsies. RESULTS: Targeted assays for CD8, CD19, CD132 (interleukin-2 receptor subunit gamma/common cytokine receptor gamma chain), FOXP3 (forkhead box P3) and IL17RA (interleukin 17 receptor A) were successful; however, assays for IL17A (interleukin 17A), IL23 (p19) (interleukin 23, alpha subunit p19) and IL23R (interleukin 23 receptor) did not permit target detection. Global proteome analysis (4200 total proteins) was performed to identify pathways associated with UC progression. Positive correlation was observed between histological scores indicating active colitis and neutrophil-related measurements (R2=0.42-0.72); inverse relationships were detected with cell junction targets (R2=0.49-0.71) and ß-catenin (R2=0.51-0.55) attributed to crypt disruption. An exploratory accuracy assessment with Geboes Score and Robarts Histopathology Index cut-offs produced sensitivities/specificities of 72.7%/75.0% and 100.0%/81.8%, respectively. CONCLUSIONS: Pathologist-guided MS assessments provide a complementary approach to histological scoring systems. Additional studies are indicated to verify the utility of this novel approach.


Asunto(s)
Colitis Ulcerosa , Biopsia , Colitis Ulcerosa/patología , Colonoscopía , Humanos , Interleucina-23 , Mucosa Intestinal/patología , Proteómica , Índice de Severidad de la Enfermedad
12.
Front Immunol ; 12: 790469, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956222

RESUMEN

Background: Neutralizing monoclonal antibodies (mAbs) to SARS-CoV-2 are clinically efficacious when administered early, decreasing hospitalization and mortality in patients with mild or moderate COVID-19. We investigated the effects of receiving mAbs (bamlanivimab alone and bamlanivimab and etesevimab together) after SARS-CoV-2 infection on the endogenous immune response. Methods: Longitudinal serum samples were collected from patients with mild or moderate COVID-19 in the BLAZE-1 trial who received placebo (n=153), bamlanivimab alone [700 mg (n=100), 2800 mg (n=106), or 7000 mg (n=98)], or bamlanivimab (2800 mg) and etesevimab (2800 mg) together (n=111). A multiplex Luminex serology assay measured antibody titers against SARS-CoV-2 antigens, including SARS-CoV-2 protein variants that evade bamlanivimab or etesevimab binding, and SARS-CoV-2 pseudovirus neutralization assays were performed. Results: The antibody response in patients who received placebo or mAbs had a broad specificity. Titer change from baseline against a receptor-binding domain mutant (Spike-RBD E484Q), as well as N-terminal domain (Spike-NTD) and nucleocapsid protein (NCP) epitopes were 1.4 to 4.1 fold lower at day 15-85 in mAb recipients compared with placebo. Neutralizing activity of day 29 sera from bamlanivimab monotherapy cohorts against both spike E484Q and beta variant (B.1.351) were slightly reduced compared with placebo (by a factor of 3.1, p=0.001, and 2.9, p=0.002, respectively). Early viral load correlated with the subsequent antibody titers of the native, unmodified humoral response (p<0.0001 at Day 15, 29, 60 and 85 for full-length spike). Conclusions: Patients with mild or moderate COVID-19 treated with mAbs develop a wide breadth of antigenic responses to SARS-CoV-2. Small reductions in titers and neutralizing activity, potentially due to a decrease in viral load following mAb treatment, suggest minimal impact of mAb treatment on the endogenous immune response.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/inmunología , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Antivirales/uso terapéutico , Combinación de Medicamentos , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2
13.
J Inflamm Res ; 14: 3823-3835, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408465

RESUMEN

BACKGROUND: Interleukin-33 (IL-33) is an alarmin that is released following cellular damage, mechanical injury, or necrosis. It is a member of the IL-1 family and binds to a heterodimer receptor consisting of ST2 and IL-1RAP to induce the production of a wide range of cellular mediators, including the type 2 cytokines IL-4, IL-5 and IL-13. This relationship has led to the hypothesis that the IL-33/ST2 pathway is a driver of allergic disease and inhibition of the IL-33 and ST2 association could have therapeutic benefit. METHODS: In this paper, we describe the selection of a phage antibody through the ability to bind human IL-33 and block IL-33/ST2 interaction. This hit antibody was then affinity matured by site-directed mutagenesis of the antibody complementarity-determining regions (CDRs). Further characterization of a fully human monoclonal antibody (mAb), torudokimab (LY3375880) included demonstration of human IL-33 neutralization activity in vitro with an NFκB reporter assay and IL-33 induced mast cell cytokine secretion assay, followed by an in vivo IL-33-induced pharmacodynamic inhibition assay in mice that used IL-5 production as the endpoint. RESULTS: Torudokimab is highly specific to IL-33 and does not bind any of the other IL-1 family members. Furthermore, torudokimab binds human and cynomolgus monkey IL-33 with higher affinity than the binding affinity of IL-33 to ST2, but does not bind mouse, rat, or rabbit IL-33. Torudokimab's half-life in cynomolgous monkey projects monthly dosing in the clinic. CONCLUSION: Due to torudokimab's high affinity, its ability to completely neutralize IL-33 activity in vitro and in vivo, and the observed cynomolgus monkey pharmacokinetic properties, this molecule was selected for clinical development.

14.
Clin Pharmacol Ther ; 110(6): 1467-1477, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34455583

RESUMEN

Therapeutics for patients hospitalized with coronavirus disease 2019 (COVID-19) are urgently needed during the pandemic. Bamlanivimab is a potent neutralizing monoclonal antibody that blocks severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) attachment and entry into human cells, which could potentially lead to therapeutic benefit. J2W-MC-PYAA was a randomized, double-blind, sponsor unblinded, placebo-controlled, single ascending dose first-in-human trial (NCT04411628) in hospitalized patients with COVID-19. A total of 24 patients received either placebo or a single dose of bamlanivimab (700 mg, 2,800 mg, or 7,000 mg). The primary objective was assessment of safety and tolerability, including adverse events and serious adverse events, with secondary objectives of pharmacokinetic (PK) and pharmacodynamic analyses. Treatment-emergent adverse event (TEAE) rates were identical in the placebo and pooled bamlanivimab groups (66.7%). There were no apparent dose-related increases in the number or severity of TEAEs. There were no serious adverse events or deaths during the study, and no discontinuations due to adverse events. PKs of bamlanivimab is linear and exposure increased proportionally with dose following single i.v. administration. The half-life was ~ 17 days. These results demonstrate the favorable safety profile of bamlanivimab, and provided the initial critical evaluation of safety, tolerability, and PKs in support of the development of bamlanivimab in several ongoing clinical trials.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Antivirales/administración & dosificación , Tratamiento Farmacológico de COVID-19 , COVID-19/diagnóstico , Hospitalización/tendencias , Administración Intravenosa , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/efectos adversos , Antivirales/efectos adversos , COVID-19/inmunología , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Fatiga/inducido químicamente , Femenino , Cefalea/inducido químicamente , Humanos , Masculino , Persona de Mediana Edad
15.
PLoS One ; 16(2): e0245917, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33596227

RESUMEN

Pre-clinical murine models are critical for translating drug candidates from the bench to the bedside. There is interest in better understanding how anti-human CD3 therapy works based on recent longitudinal studies of short-term administration. Although several models have been created in this pursuit, each have their own advantages and disadvantages in Type-1 diabetes. In this study, we report a murine genetic knock-in model which expresses both a murine and a humanized-CD3ε-exon, rendering it sensitive to manipulation with anti-human CD3. These huCD3εHET mice are viable and display no gross abnormalities. Specifically, thymocyte development and T cell peripheral homeostasis is unaffected. We tested immune functionality of these mice by immunizing them with T cell-dependent antigens and no differences in antibody titers compared to wild type mice were recorded. Finally, we performed a graft-vs-host disease model that is driven by effector T cell responses and observed a wasting disease upon transfer of huCD3εHET T cells. Our results show a viable humanized CD3 murine model that develops normally, is functionally engaged by anti-human CD3 and can instruct on pre-clinical tests of anti-human CD3 antibodies.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Complejo CD3/genética , Complejo CD3/inmunología , Técnicas de Sustitución del Gen , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Fenotipo , Linfocitos T/citología , Linfocitos T/inmunología , Timocitos/citología , Timocitos/inmunología
16.
J Allergy Clin Immunol ; 147(1): 107-111, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32920092

RESUMEN

BACKGROUND: Physicians treating patients with coronavirus disease 2019 (COVID-19) increasingly believe that the hyperinflammatory acute stage of COVID-19 results in a cytokine storm. The circulating biomarkers seen across the spectrum of COVID-19 have not been characterized compared with healthy controls, but such analyses are likely to yield insights into the pursuit of interventions that adequately reduce the burden of these cytokine storms. OBJECTIVE: To identify and characterize the host inflammatory response to severe acute respiratory syndrome coronavirus 2 infection, we assessed levels of proteins related to immune responses and cardiovascular disease in patients stratified as mild, moderate, and severe versus matched healthy controls. METHODS: Blood samples from adult patients hospitalized with COVID-19 were analyzed using high-throughput and ultrasensitive proteomic platforms and compared with age- and sex-matched healthy controls to provide insights into differential regulation of 185 markers. RESULTS: Results indicate a dominant hyperinflammatory milieu in the circulation and vascular endothelial damage markers within patients with COVID-19, and strong biomarker association with patient response as measured by Ordinal Scale. As patients progress, we observe statistically significant dysregulation of IFN-γ, IL-1RA, IL-6, IL-10, IL-19, monocyte chemoattractant protein (MCP)-1, MCP-2, MCP-3, CXCL9, CXCL10, CXCL5, ENRAGE, and poly (ADP-ribose) polymerase 1. Furthermore, in a limited series of patients who were sampled frequently, confirming reliability and reproducibility of our assays, we demonstrate that intervention with baricitinib attenuates these circulating biomarkers associated with the cytokine storm. CONCLUSIONS: These wide-ranging circulating biomarkers show an association with increased disease severity and may help stratify patients and selection of therapeutic options. They also provide insights into mechanisms of severe acute respiratory syndrome coronavirus 2 pathogenesis and the host response.


Asunto(s)
COVID-19/sangre , Síndrome de Liberación de Citoquinas/sangre , Citocinas/sangre , Poli(ADP-Ribosa) Polimerasa-1/sangre , Proteómica , SARS-CoV-2/metabolismo , Adulto , Biomarcadores/sangre , Femenino , Humanos , Masculino
17.
Arthritis Res Ther ; 22(1): 235, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046136

RESUMEN

BACKGROUND: Tissue released blood-based biomarkers can provide insight into drug mode of action and response. To understand the changes in extracellular matrix turnover, we analyzed biomarkers associated with joint tissue turnover from a phase 3, randomized, placebo-controlled study of baricitinib in patients with active rheumatoid arthritis (RA). METHODS: Serum biomarkers associated with synovial inflammation (C1M, C3M, and C4M), cartilage degradation (C2M), bone resorption (CTX-I), and bone formation (osteocalcin) were analyzed at baseline, and weeks 4 and 12, from a subgroup of patients (n = 240) randomized to placebo or 2-mg or 4-mg baricitinib (RA-BUILD, NCT01721057). Mixed-model repeated measure was used to identify biomarkers altered by baricitinib. The relationship between changes in biomarkers and clinical measures was evaluated using correlation analysis. RESULTS: Treatment arms were well balanced for baseline biomarkers, demographics, and disease activity. At week 4, baricitinib 4-mg significantly reduced C1M from baseline by 21% compared to placebo (p < 0.01); suppression was sustained at week 12 (27%, p < 0.001). Baricitinib 4-mg reduced C3M and C4M at week 4 by 14% and 12% compared to placebo, respectively (p < 0.001); they remained reduced by 16% and 11% at week 12 (p < 0.001). In a pooled analysis including all treatment arms, patients with the largest reduction (upper 25% quartile) in C1M, C3M, and C4M by week 12 had significantly greater clinical improvement in the Simplified Disease Activity Index at week 12 compared to patients with the smallest reduction (lowest 25% quartile). CONCLUSION: Baricitinib treatment resulted in reduced circulating biomarkers associated with joint tissue destruction as well as concomitant RA clinical improvement. TRIAL REGISTRATION: ClinicalTrials.gov NCT01721057 ; date of registration: November 1, 2012.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Azetidinas , Biomarcadores , Humanos , Janus Quinasa 1 , Metotrexato/uso terapéutico , Purinas , Pirazoles , Sulfonamidas
18.
Lupus Sci Med ; 7(1)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33037080

RESUMEN

OBJECTIVE: To characterise the molecular pathways impacted by the pharmacologic effects of the Janus kinase (JAK) 1 and JAK2 inhibitor baricitinib in SLE. METHODS: In a phase II, 24-week, randomised, placebo-controlled, double-blind study (JAHH), RNA was isolated from whole blood in 274 patients and analysed using Affymetrix HTA2.0 array. Serum cytokines were measured using ultrasensitive quantitative assays. RESULTS: Gene expression profiling demonstrated an elevation of STAT1, STAT2 and multiple interferon (IFN) responsive genes at baseline in patients with SLE. Statistical and gene network analyses demonstrated that baricitinib treatment reduced the mRNA expression of functionally interconnected genes involved in SLE including STAT1-target, STAT2-target and STAT4-target genes and multiple IFN responsive genes. At baseline, serum cytokines IFN-α, IFN-γ, interleukin (IL)-12p40 and IL-6 were measurable and elevated above healthy controls. Treatment with baricitinib significantly decreased serum IL-12p40 and IL-6 cytokine levels at week 12, which persisted through week 24. CONCLUSION: Baricitinib treatment induced significant reduction in the RNA expression of a network of genes associated with the JAK/STAT pathway, cytokine signalling and SLE pathogenesis. Baricitinib consistently reduced serum levels of two key cytokines implicated in SLE pathogenesis, IL-12p40 and IL-6.


Asunto(s)
Azetidinas/uso terapéutico , Lupus Eritematoso Sistémico , Purinas/uso terapéutico , Pirazoles/uso terapéutico , Sulfonamidas/uso terapéutico , Adulto , Femenino , Expresión Génica , Humanos , Lupus Eritematoso Sistémico/tratamiento farmacológico , Masculino , Persona de Mediana Edad
19.
MAbs ; 11(6): 1175-1190, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31181988

RESUMEN

We describe a bispecific dual-antagonist antibody against human B cell activating factor (BAFF) and interleukin 17A (IL-17). An anti-IL-17 single-chain variable fragment (scFv) derived from ixekizumab (Taltz®) was fused via a glycine-rich linker to anti-BAFF tabalumab. The IgG-scFv bound both BAFF and IL-17 simultaneously with identical stoichiometry as the parental mAbs. Stability studies of the initial IgG-scFv revealed chemical degradation and aggregation not observed in either parental antibody. The anti-IL-17 scFv showed a high melting temperature (Tm) by differential scanning calorimetry (73.1°C), but also concentration-dependent, initially reversible, protein self-association. To engineer scFv stability, three parallel approaches were taken: labile complementary-determining region (CDR) residues were replaced by stable, affinity-neutral amino acids, CDR charge distribution was balanced, and a H44-L100 interface disulfide bond was introduced. The Tm of the disulfide-stabilized scFv was largely unperturbed, yet it remained monodispersed at high protein concentration. Fluorescent dye binding titrations indicated reduced solvent exposure of hydrophobic residues and decreased proteolytic susceptibility was observed, both indicative of enhanced conformational stability. Superimposition of the H44-L100 scFv (PDB id: 6NOU) and ixekizumab antigen-binding fragment (PDB id: 6NOV) crystal structures revealed nearly identical orientation of the frameworks and CDR loops. The stabilized bispecific molecule LY3090106 (tibulizumab) potently antagonized both BAFF and IL-17 in cell-based and in vivo mouse models. In cynomolgus monkey, it suppressed B cell development and survival and remained functionally intact in circulation, with a prolonged half-life. In summary, we engineered a potent bispecific antibody targeting two key cytokines involved in human autoimmunity amenable to clinical development.


Asunto(s)
Anticuerpos Biespecíficos , Enfermedades Autoinmunes/tratamiento farmacológico , Factor Activador de Células B/antagonistas & inhibidores , Interleucina-17/antagonistas & inhibidores , Anticuerpos de Cadena Única , Animales , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Factor Activador de Células B/inmunología , Femenino , Células HEK293 , Células HT29 , Humanos , Interleucina-17/inmunología , Macaca fascicularis , Ratones , Ratones Transgénicos , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/farmacología
20.
J Immunol Methods ; 466: 9-16, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30590020

RESUMEN

IL-21 is a pleiotropic cytokine that plays a key role in modulating inflammatory responses, including the promotion of autoimmune diseases. Several groups have quantitated circulating levels of IL-21 in plasma and serum samples using various commercial ELISAs. We determined, however, that the most commonly used commercial assays in published literature were not specific or sensitive enough to detect levels of IL-21 in heparin plasma or serum from healthy human individuals. This finding prompted an effort to develop more specific and sensitive methods to quantitate IL-21 in complex biological matrices using proprietary anti-IL-21 antibodies with the Quanterix SiMoA platform and the Meso Scale Discovery (MSD) S-PLEX® format. Assays developed on both technology platforms were characterized in heparin plasma and serum using spike recoveries across a range of concentrations. Each method was able to detect sub-pg/mL levels of IL-21 (predicted Limit of Detection [LOD] of approximately 1.0 fg/mL for both the Quanterix SiMoA and MSD S-PLEX® platforms) which is 200-500 times lower than current commercial assays. Additionally we demonstrated that rheumatoid factor did not interfere with measuring IL-21 in the Quanterix SiMoA assay. Results obtained with the two new ultrasensitive assays showed a strong correlation (r = 0.9428; p < .0001). Additionally, IL-21 levels were significantly increased in samples from patients with Systemic Lupus Erythematosus (mean+/- SD: n = 14, 202.64 +/- 111.47 fg/mL, p = .0001 for Quanterix SiMoA and 275.4 +/- 174.66 fg/mL p = .0001 for MSD S-PLEX®) as well as in samples from patients with Sjögren's Syndrome (mean+/- SD: n = 11, 122.18 +/- 84.50 fg/mL, p = .0029 for Quanterix SiMoA and 183.64 +/- 153.00 fg/mL, p = .0082 for MSD S-PLEX®) when compared to healthy donors (mean+/- SD: n = 11, 38.1 +/- 27.8 fg/mL for Quanterix SiMoA and 58.1 +/- 30.7 fg/mL for MSD S-PLEX®). These ultrasensitive assays, for the first time, allow for the accurate quantitation of human IL-21 in heparin plasma and serum. In addition, these experiments also provide a direct comparison of the MSD S-PLEX® format and Quanterix SiMoA platform technologies, which may have broader implications to future application of these methods to evaluate low abundance proteins in complex biological matrices.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Interleucinas/sangre , Voluntarios Sanos , Humanos , Interleucinas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...