Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 184(2): 806-822, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32699027

RESUMEN

Lignin, a critical phenolic polymer in secondary cell walls of plant cells, enables strength in fibers and water transportation in xylem vessel elements. Secreted enzymes, namely laccases (LACs) and peroxidases (PRXs), facilitate lignin polymerization by oxidizing lignin monomers (monolignols). Previous work in Arabidopsis (Arabidopsis thaliana) demonstrated that AtLAC4 and AtPRX64 localized to discrete lignified cell wall domains in fibers, although the spatial distributions of other enzymes in these large gene families are unknown. Here, we show that characteristic sets of putative lignin-associated LACs and PRXs localize to precise regions during stem development, with LACs and PRXs co-occurring in cell wall domains. AtLAC4, AtLAC17, and AtPRX72 localized to the thick secondary cell wall of xylem vessel elements and fibers, whereas AtLAC4, AtPRX64, and AtPRX71 localized to fiber cell corners. Interestingly, AtLAC4 had a transient cell corner localization early in fiber development that disappeared in the mature stem. In contrast with these secondary cell wall localizations, AtLAC10, AtPRX42, AtPRX52, and AtPRX71 were found in nonlignified tissues. Despite ubiquitous PRX occurrence in cell walls, PRX oxidative activity was restricted to lignifying regions during development, which suggested regulated production of apoplastic hydrogen peroxide. Relative amounts of apoplastic reactive oxygen species differed between lignified cell types, which could modulate PRX activity. Together, these results indicate that precise localization of oxidative enzymes and differential distribution of oxidative substrates, such as hydrogen peroxide, provide mechanisms to control spatiotemporal deposition of lignin during development.


Asunto(s)
Pared Celular/enzimología , Lacasa/metabolismo , Lignina/metabolismo , Peroxidasas/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Arabidopsis , Tallos de la Planta/enzimología , Especies Reactivas de Oxígeno/metabolismo
2.
J Insect Physiol ; 105: 76-84, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29371099

RESUMEN

Normal gut function is vital for animal survival, and deviations from such function can contribute to malnutrition, inflammation, increased susceptibility to pathogens, diabetes, neurodegenerative diseases, and cancer. In the fruit fly Drosophila melanogaster, mutation of the gene drop-dead (drd) results in defective gut function, as measured by enlargement of the crop and reduced food movement through the gut, and drd mutation also causes the unrelated phenotypes of neurodegeneration, early adult lethality and female sterility. In the current work, adult drd mutant flies are also shown to lack the peritrophic matrix (PM), an extracellular barrier that lines the lumen of the midgut and is found in many insects including flies, mosquitos and termites. The use of a drd-gal4 construct to drive a GFP reporter in late pupae and adults revealed drd expression in the anterior cardia, which is the site of PM synthesis in Drosophila. Moreover, the ability of drd knockdown or rescue with several gal4 drivers to recapitulate or rescue the gut phenotypes (lack of a PM, reduced defecation, and reduced adult survival 10-40 days post-eclosion) was correlated to the level of expression of each driver in the anterior cardia. Surprisingly, however, knocking down drd expression only in adult flies, which has previously been shown not to affect survival, eliminated the PM without reducing defecation rate. These results demonstrate that drd mutant flies have a novel phenotype, the absence of a PM, which is functionally separable from the previously described gut dysfunction observed in these flies. As the first mutant Drosophila strain reported to lack a PM, drd mutants will be a useful tool for studying the synthesis of this structure.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Matriz Extracelular/genética , Animales , Defecación , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Tracto Gastrointestinal/anatomía & histología , Tracto Gastrointestinal/metabolismo , Pleiotropía Genética , Masculino , Fenotipo
3.
Plant Physiol ; 166(2): 798-807, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25157028

RESUMEN

Plants precisely control lignin deposition in spiral or annular secondary cell wall domains during protoxylem tracheary element (TE) development. Because protoxylem TEs function to transport water within rapidly elongating tissues, it is important that lignin deposition is restricted to the secondary cell walls in order to preserve the plasticity of adjacent primary wall domains. The Arabidopsis (Arabidopsis thaliana) inducible VASCULAR NAC DOMAIN7 (VND7) protoxylem TE differentiation system permits the use of mutant backgrounds, fluorescent protein tagging, and high-resolution live-cell imaging of xylem cells during secondary cell wall development. Enzymes synthesizing monolignols, as well as putative monolignol transporters, showed a uniform distribution during protoxylem TE differentiation. By contrast, the oxidative enzymes LACCASE4 (LAC4) and LAC17 were spatially localized to secondary cell walls throughout protoxylem TE differentiation. These data support the hypothesis that precise delivery of oxidative enzymes determines the pattern of cell wall lignification. This view was supported by lac4lac17 mutant analysis demonstrating that laccases are necessary for protoxylem TE lignification. Overexpression studies showed that laccases are sufficient to catalyze ectopic lignin polymerization in primary cell walls when exogenous monolignols are supplied. Our data support a model of protoxylem TE lignification in which monolignols are highly mobile once exported to the cell wall, and in which precise targeting of laccases to secondary cell wall domains directs lignin deposition.


Asunto(s)
Pared Celular/metabolismo , Lacasa/metabolismo , Lignina/metabolismo , Xilema/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Polimerizacion
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...