Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 153: 106487, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490048

RESUMEN

Computational models of mature bone have been used to predict fracture; however, analogous study of immature diaphyseal fracture has not been conducted due to sparse experimental mechanical data. A model of immature bone fracture may be used to aid in the differentiation of accidental and non-accidental trauma fractures in young, newly ambulatory children (0-3 years). The objective of this study was to characterize the evolution of tissue-level mechanical behavior, composition, and microstructure of maturing cortical porcine bone with uniaxial tension, Raman spectroscopy, and light microscopy as a function of maturation. We asked: 1) How do the monotonic uniaxial tensile properties change with maturation and displacement rate; 2) How does the composition and microstructure change with maturation; and 3) Is there a correlation between composition and tensile properties with maturation? Elastic modulus (p < 0.001), fracture stress (p < 0.001), and energy absorption (p < 0.014) increased as a function of maturation at the quasistatic rate by 110%, 86%, and 96%, respectively. Fracture stress also increased by 90% with maturation at the faster rate (p = 0.001). Fracture stress increased as a function of increasing displacement rate by 28% (newborn p = 0.048; 1-month p = 0.004; 3-month p= < 0.001), and fracture strain decreased by 68% with increasing displacement rate (newborn p = 0.002; 1-month p = 0.036; 3-month p < 0.001). Carbonate-to-phosphate ratio was positively linearly related to elastic modulus, and fracture stress was positively related to carbonate-to-phosphate ratio and matrix maturation ratio. The results of this study support that immature bone is strain-rate dependent and becomes more brittle at faster rates, contributing to the foundation upon which a computational model can be built to evaluate immature bone fracture.


Asunto(s)
Hueso Cortical , Fracturas Óseas , Niño , Recién Nacido , Humanos , Animales , Porcinos , Fenómenos Biomecánicos , Fosfatos , Carbonatos , Estrés Mecánico
2.
Artículo en Inglés | MEDLINE | ID: mdl-32952604

RESUMEN

We measured speed of sound in bovine articular cartilage as a function of compressive strain. Using techniques we developed, it was possible to apply strain starting from the unstrained, full height of a sample. Our measurements showed that speed of sound was not a monotonic function of strain as reported in earlier investigations. Speed increased with increasing strain over a range of lower strains. It reached a maximum, and then decreased as the strain increased further. These results were corroborated using a model of wave propagation in deformable porous materials. Using this model, we also established conditions under which a maximum in the speed would exist for samples in compression. Our measurements and analysis resolve the conflicting results reported in previous studies.


Asunto(s)
Cartílago Articular , Animales , Bovinos , Fuerza Compresiva , Sonido , Estrés Mecánico
3.
J Bone Joint Surg Am ; 101(17): e85, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31483404

RESUMEN

BACKGROUND: Structural bone allografts are an established treatment method for long-bone structural defects resulting from such conditions as traumatic injury and sarcoma. The functional lifetime of structural allografts depends on resistance to cyclic loading (cyclic fatigue life), which can lead to fracture at stress levels well below the yield strength. Raman spectroscopy biomarkers can be used to non-destructively assess the 3 primary components of bone (collagen, mineral, and water), and may aid in optimizing allograft selection to decrease fatigue fracture risk. We studied the association of Raman biomarkers with the cyclic fatigue life of human allograft cortical bone. METHODS: Twenty-one cortical bone specimens were machined from the femoral diaphyses of 4 human donors (a 63-year old man, a 61-year-old man, a 51-year-old woman, and a 48-year-old woman) obtained from the Musculoskeletal Transplant Foundation. Six Raman biomarkers were analyzed: collagen disorganization, mineral maturation, matrix mineralization, and 3 water compartments. The specimens underwent cyclic fatigue testing under fully reversed conditions (35 and 45 MPa), during which they were tested to fracture or to 30 million cycles ("runout"), simulating 15 years of moderate activity. A tobit censored linear regression model for cyclic fatigue life was created. RESULTS: The multivariate model explained 60% of the variance in the cyclic fatigue life (R = 0.604, p < 0.001). Increases in Raman biomarkers for disordered collagen (coefficient: -2.74×10, p < 0.001) and for loosely collagen-bound water compartments (coefficient: -2.11×10, p < 0.001) were associated with a decreased cyclic fatigue life. Increases in Raman biomarkers for mineral maturation (coefficient: 3.50×10, p < 0.001), matrix mineralization (coefficient: 2.32×10, p < 0.001), tightly collagen-bound water (coefficient: 1.19×10, p < 0.001), and mineral-bound water (coefficient: 3.27×10, p < 0.001) were associated with an increased cyclic fatigue life. Collagen disorder accounted for 44% of the variance in the cyclic fatigue life, mineral maturation accounted for 6%, and all bound water compartments accounted for 3%. CONCLUSIONS: Increasing baseline collagen disorder was associated with a decreased cyclic fatigue life and had the strongest correlation with the cyclic fatigue life of human cortical donor bone. This model should be prospectively validated. CLINICAL RELEVANCE: Raman analysis is a promising tool for the non-destructive evaluation of structural bone allograft quality for load-bearing applications.


Asunto(s)
Enfermedades del Colágeno/fisiopatología , Hueso Cortical/fisiología , Supervivencia de Injerto/fisiología , Adulto , Aloinjertos/fisiología , Biomarcadores/metabolismo , Fenómenos Biomecánicos/fisiología , Agua Corporal/química , Densidad Ósea/fisiología , Trasplante Óseo/métodos , Cadáver , Fatiga/fisiopatología , Fémur/fisiología , Humanos , Masculino , Persona de Mediana Edad , Espectrometría Raman
4.
Clin Biomech (Bristol, Avon) ; 28(9-10): 981-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24125692

RESUMEN

BACKGROUND: Biomechanics of iatrogenic subtrochanteric femur fractures have been examined. Previously-described loading models employed monotonic loading on the femoral head, which is limited in emulating physiological features. We hypothesize that cyclic loading combined with the engagement of abductor forces will reliably cause iatrogenic subtrochanteric fractures. METHODS: Finite element analysis determined the effects of adding the abductor muscle forces to the hip contact force around holes located in the lateral femoral cortex. Finite element analysis predictions were validated by strain gage measurements using Sawbones™ femurs (Pacific Research Laboratories, Inc., Vashon, Washington, USA) with or without abductor muscle forces. The newly developed physiologically-relevant loading model was tested on cadaveric femurs (N=8) under cyclic loading until failure. FINDINGS: Finite element analysis showed the addition of the abductor muscle forces increased the maximum surface cortical strain by 107% and the strain energy density by 332% at the lateral femoral cortex. Strain gages detected a 72.9% increase in lateral cortical strain using the combined loading model. The cyclic, combined loading led to subtrochanteric fractures through the drill hole in all cadaveric femurs. INTERPRETATION: Finite element analysis simulations, strain gage measurements, and cyclic loading of fresh-frozen femurs indicate the inclusion of abductor forces increases the stress and strain at the proximal-lateral femoral cortex. Furthermore, a cyclic loading model that incorporates a hip contact force and abductor muscles force creates the clinically encountered subtrochanteric fractures in vitro. This physiologically-relevant loading model may be used to further study iatrogenic subtrochanteric femur fractures.


Asunto(s)
Análisis de Elementos Finitos , Fracturas por Estrés/fisiopatología , Fracturas de Cadera/fisiopatología , Enfermedad Iatrogénica , Modelos Biológicos , Soporte de Peso/fisiología , Fenómenos Biomecánicos , Cadáver , Marcha/fisiología , Humanos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...