Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 195(1): 155-169, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298124

RESUMEN

The endosperm, a transient seed tissue, plays a pivotal role in supporting embryo growth and germination. This unique feature sets flowering plants apart from gymnosperms, marking an evolutionary innovation in the world of seed-bearing plants. Nevertheless, the importance of the endosperm extends beyond its role in providing nutrients to the developing embryo by acting as a versatile protector, preventing hybridization events between distinct species and between individuals with different ploidy. This phenomenon centers on growth and differentiation of the endosperm and the speed at which both processes unfold. Emerging studies underscore the important role played by type I MADS-box transcription factors, including the paternally expressed gene PHERES1. These factors, along with downstream signaling pathways involving auxin and abscisic acid, are instrumental in regulating endosperm development and, consequently, the establishment of hybridization barriers. Moreover, mutations in various epigenetic regulators mitigate these barriers, unveiling a complex interplay of pathways involved in their formation. In this review, we discuss the molecular underpinnings of endosperm-based hybridization barriers and their evolutionary drivers.


Asunto(s)
Endospermo , Hibridación Genética , Endospermo/genética , Endospermo/metabolismo , Evolución Biológica , Regulación de la Expresión Génica de las Plantas
2.
Plant Cell ; 36(4): 863-880, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38060984

RESUMEN

In sexually propagating organisms, genetic, and epigenetic mutations are evolutionarily relevant only if they occur in the germline and are hence transmitted to the next generation. In contrast to most animals, plants are considered to lack an early segregating germline, implying that somatic cells can contribute genetic information to progeny. Here we demonstrate that 2 ARGONAUTE proteins, AGO5 and AGO9, mark cells associated with sexual reproduction in Arabidopsis (Arabidopsis thaliana) throughout development. Both AGOs are loaded with dynamically changing small RNA populations derived from highly methylated, pericentromeric, long transposons. Sequencing of single stem cell nuclei revealed that many of these transposons are co-expressed within an AGO5/9 expression domain in the shoot apical meristem (SAM). Co-occurrence of transposon expression and specific ARGONAUTE (AGO) expression in the SAM is reminiscent of germline features in animals and supports the existence of an early segregating germline in plants. Our results open the path to investigating transposon biology and epigenome dynamics at cellular resolution in the SAM stem cell niche.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Linaje de la Célula , Plantas/genética , ARN de Planta/metabolismo , Reproducción , Meristema , Regulación de la Expresión Génica de las Plantas/genética
3.
Plant Cell ; 35(2): 874-888, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36427255

RESUMEN

The endosperm is a nutritive tissue supporting embryo growth in flowering plants. Most commonly, the endosperm initially develops as a coenocyte (multinucleate cell) and then cellularizes. This process of cellularization is frequently disrupted in hybrid seeds generated by crosses between different flowering plant species or plants that differ in ploidy, resulting in embryo arrest and seed lethality. The reason for embryo arrest upon cellularization failure remains unclear. In this study, we show that triploid Arabidopsis thaliana embryos surrounded by uncellularized endosperm mount an osmotic stress response that is connected to increased levels of abscisic acid (ABA) and enhanced ABA responses. Impairing ABA biosynthesis and signaling aggravated triploid seed abortion, while increasing endogenous ABA levels as well as the exogenous application of ABA-induced endosperm cellularization and suppressed embryo growth arrest. Taking these results together, we propose that endosperm cellularization is required to establish dehydration tolerance in the developing embryo, ensuring its survival during seed maturation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Endospermo/genética , Endospermo/metabolismo , Proteínas de Arabidopsis/metabolismo , Triploidía , Deshidratación , Arabidopsis/metabolismo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
4.
Plant Cell ; 34(8): 3128-3147, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35511183

RESUMEN

Viral infections impose extraordinary RNA stress, triggering cellular RNA surveillance pathways such as RNA decapping, nonsense-mediated decay, and RNA silencing. Viruses need to maneuver among these pathways to establish infection and succeed in producing high amounts of viral proteins. Processing bodies (PBs) are integral to RNA triage in eukaryotic cells, with several distinct RNA quality control pathways converging for selective RNA regulation. In this study, we investigated the role of Arabidopsis thaliana PBs during Cauliflower mosaic virus (CaMV) infection. We found that several PB components are co-opted into viral factories that support virus multiplication. This pro-viral role was not associated with RNA decay pathways but instead, we established that PB components are helpers in viral RNA translation. While CaMV is normally resilient to RNA silencing, dysfunctions in PB components expose the virus to this pathway, which is similar to previous observations for transgenes. Transgenes, however, undergo RNA quality control-dependent RNA degradation and transcriptional silencing, whereas CaMV RNA remains stable but becomes translationally repressed through decreased ribosome association, revealing a unique dependence among PBs, RNA silencing, and translational repression. Together, our study shows that PB components are co-opted by the virus to maintain efficient translation, a mechanism not associated with canonical PB functions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Caulimovirus/genética , Caulimovirus/metabolismo , Proteínas Co-Represoras/metabolismo , Cuerpos de Procesamiento , ARN Viral/genética
5.
Nucleic Acids Res ; 50(1): 244-258, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34904670

RESUMEN

Loss of genome stability leads to reduced fitness, fertility and a high mutation rate. Therefore, the genome is guarded by the pathways monitoring its integrity and neutralizing DNA lesions. To analyze the mechanism of DNA damage induction by cytidine analog zebularine, we performed a forward-directed suppressor genetic screen in the background of Arabidopsis thaliana zebularine-hypersensitive structural maintenance of chromosomes 6b (smc6b) mutant. We show that smc6b hypersensitivity was suppressed by the mutations in EQUILIBRATIVE NUCLEOSIDE TRANSPORTER 3 (ENT3), DNA METHYLTRANSFERASE 1 (MET1) and DECREASE IN DNA METHYLATION 1 (DDM1). Superior resistance of ent3 plants to zebularine indicated that ENT3 is likely necessary for the import of the drug to the cells. Identification of MET1 and DDM1 suggested that zebularine induces DNA damage by interference with the maintenance of CG DNA methylation. The same holds for structurally similar compounds 5-azacytidine and 2-deoxy-5-azacytidine. Based on our genetic and biochemical data, we propose that zebularine induces enzymatic DNA-protein crosslinks (DPCs) of MET1 and zebularine-containing DNA in Arabidopsis, which was confirmed by native chromatin immunoprecipitation experiments. Moreover, zebularine-induced DPCs accumulate preferentially in 45S rDNA chromocenters in a DDM1-dependent manner. These findings open a new avenue for studying genome stability and DPC repair in plants.


Asunto(s)
Citidina/análogos & derivados , Heterocromatina/metabolismo , Mutágenos/toxicidad , ARN Ribosómico/genética , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Citidina/toxicidad , ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas de Unión al ADN/genética , Resistencia a Medicamentos , Heterocromatina/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Mutación , ARN Ribosómico/efectos de los fármacos , Factores de Transcripción/genética
6.
PLoS Genet ; 17(3): e1009444, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690630

RESUMEN

Paramutation is a form of non-Mendelian inheritance in which the expression of a paramutable allele changes when it encounters a paramutagenic allele. This change in expression of the paramutable alleles is stably inherited even after segregation of both alleles. While the discovery of paramutation and studies of its underlying mechanism were made with alleles that change plant pigmentation, paramutation-like phenomena are known to modulate the expression of other traits and in other eukaryotes, and many cases have probably gone undetected. It is likely that epigenetic mechanisms are responsible for the phenomenon, as paramutation forms epialleles, genes with identical sequences but different expression states. This could account for the intergenerational inheritance of the paramutated allele, providing profound evidence that triggered epigenetic changes can be maintained over generations. Here, we use a case of paramutation that affects a transgenic selection reporter gene in tetraploid Arabidopsis thaliana. Our data suggest that different types of small RNA are derived from paramutable and paramutagenic epialleles. In addition, deletion of a repeat within the epiallele changes its paramutability. Further, the temperature during the growth of the epiallelic hybrids determines the degree and timing of the allelic interaction. The data further make it plausible why paramutation in this system becomes evident only in the segregating F2 population of tetraploid plants containing both epialleles. In summary, the results support a model for polyploidy-associated paramutation, with similarities as well as distinctions from other cases of paramutation.


Asunto(s)
Alelos , Arabidopsis/genética , Mutación , Poliploidía , ARN de Planta , ARN Pequeño no Traducido , Temperatura , Orden Génico , Silenciador del Gen , Interferencia de ARN
7.
Plant Direct ; 4(9): e00269, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33015536

RESUMEN

The discovery of CRISPR/Cas9 has revolutionized molecular biology, and its impact on plant biotechnology and plant breeding cannot be over-estimated. In many plant species, its application for mutagenesis is now a routine procedure--if suitable target sites, sufficient expression of the Cas9 protein, and functioning sgRNAs are combined. sgRNAs differ in their efficiency, depending on parameters that are only poorly understood. Several software tools and experience from growing databases are supporting the design of sgRNAs, but some seemingly perfect sgRNAs turn out to be inefficient or fail entirely, and most data bases stem from work with mammalian cells. Different in vitro assays testing sgRNAs in reconstituted Cas9 complexes are available and useful to reduce the risk of failure, especially in plants when CRISPR/Cas9 application requires modifications within the germ line and laborious transformation protocols. Low sgRNA efficiency and long generation times in plants can also contribute to the workload and costs of screening for the wanted genome edits. Here, we present a protocol in which a simple, initial in vitro test for suitable sgRNAs is modified to accelerate genotyping of Cas9-induced mutations. We demonstrate applicability of our protocol for mutagenesis and mutation screen for specific genes in Arabidopsis, but the principle should be universally suitable to provide a simple, low-cost, and rapid method to identify edited genes also in other plants and other organisms.

8.
Proc Natl Acad Sci U S A ; 114(14): 3558-3560, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28341707
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...