Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 858770, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090111

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been fatal to human health, affecting almost the entire world. Here we reported, for the first time, characterization of the genetic variants of SARS-CoV-2 circulating in Kuwait to understand their genetic diversity and monitor the accumulation of mutations over time. This study randomly enrolled 209 COVID-19 patients whose nasopharyngeal swabs were positive for SARS-CoV-2 between February 2020 and June 2021 using RT-PCR. The whole genomes of SARS-CoV-2 from the nasopharyngeal swabs were sequenced using the Oxford Nanopore sequencing technology following the ARTIC network protocol. Whole-genome sequencing has identified different clades/sub-clades circulating in Kuwait, mimicking the virus's global spread. Clade 20A was dominant from February 2020 until January 2021, and then clade 20I (Alpha, V1) emerged and dominated. In June 2021, the number of cases infected with clades 21I, 21A, and 21 J (Delta) increased and dominated. We detected several known clade-defining missense and synonymous mutations and other missense mutations in the genes encoding important viral proteins, including ORF1a, S, ORF3a, ORF8 regions and a novel mutation in the N region. ORF1ab region harbored more mutations and deletions (n = 62, 49.2%) compared to the other 12 gene regions, and the most prevalent missense mutations were P314L (97%) in ORF1b and D614G (97%) in the S glycoprotein regions. Detecting and analyzing mutations and monitoring the evolution of SARS-CoV-2 over time is essential to help better understand the spread of various clades/strains of SARS-CoV-2 and their implications for pathogenesis. In addition, knowledge of the circulating variants and genome sequence variability of SARS-CoV-2 may potentially influence the development of vaccines and antiviral drugs to control the COVID-19 pandemic.

2.
Cancers (Basel) ; 14(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35740525

RESUMEN

Chemotherapy is a mainstay of colorectal cancer treatment, and often involves a combination drug regime. CpG island methylator phenotype (CIMP)-positive tumors are potentially more responsive to the topoisomerase-inhibitor irinotecan. The mechanistic basis of the increased sensitivity of CIMP cancers to irinotecan is poorly understood. Mutated in Colorectal Cancer (MCC) is emerging as a multifunctional tumor suppressor gene in colorectal and liver cancers, and has been implicated in drug responsiveness. Here, we found that CIMP tumors undergo MCC loss almost exclusively via promoter hypermethylation rather than copy number variation or mutations. A subset of cancers display hypomethylation which is also associated with low MCC expression, particularly in rectal cancer, where CIMP is rare. MCC knockdown or deletion was found to sensitize cells to SN38 (the active metabolite of irinotecan) or the PARP-inhibitor Olaparib. A synergistic effect on cell death was evident when these drugs were used concurrently. The improved SN38/irinotecan efficacy was accompanied by the down-regulation of DNA repair genes. Thus, differential methylation of MCC is potentially a valuable biomarker to identify colorectal cancers suitable for irinotecan therapy, possibly in combination with PARP inhibitors.

3.
Cell Death Differ ; 27(1): 242-254, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31114026

RESUMEN

The antimalarial drug artemisinin and its derivatives have been explored as potential anticancer agents, but their underlying mechanisms are controversial. In this study, we found that artemisinin compounds can sensitize cancer cells to ferroptosis, a new form of programmed cell death driven by iron-dependent lipid peroxidation. Mechanistically, dihydroartemisinin (DAT) can induce lysosomal degradation of ferritin in an autophagy-independent manner, increasing the cellular free iron level and causing cells to become more sensitive to ferroptosis. Further, by associating with cellular free iron and thus stimulating the binding of iron-regulatory proteins (IRPs) with mRNA molecules containing iron-responsive element (IRE) sequences, DAT impinges on IRP/IRE-controlled iron homeostasis to further increase cellular free iron. Importantly, in both in vitro and a mouse xenograft model in which ferroptosis was triggered in cancer cells by the inducible knockout of GPX4, we found that DAT can augment GPX4 inhibition-induced ferroptosis in a cohort of cancer cells that are otherwise highly resistant to ferroptosis. Collectively, artemisinin compounds can sensitize cells to ferroptosis by regulating cellular iron homeostasis. Our findings can be exploited clinically to enhance the effect of future ferroptosis-inducing cancer therapies.


Asunto(s)
Antineoplásicos/farmacología , Artemisininas/farmacología , Ferroptosis/efectos de los fármacos , Hierro/metabolismo , Animales , Antineoplásicos/uso terapéutico , Artemisininas/química , Artemisininas/uso terapéutico , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Femenino , Homeostasis , Humanos , Proteínas Reguladoras del Hierro/metabolismo , Lisosomas/metabolismo , Ratones Desnudos , Neoplasias/metabolismo , Elementos de Respuesta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA