Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nanoscale ; 16(13): 6477-6487, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38426659

RESUMEN

Atherosclerosis, a leading cause of cardiovascular diseases requires approaches to enhance disease monitoring and treatment. Nanoparticles offer promising potential in this area by being customisable to target components or molecular processes within plaques, while carrying diagnostic and therapeutic agents. However, the number of biomarkers available to target this disease is limited. This study investigated the use of sphingomyelin-based nanomicelles triggered by sphingomyelinase (SMase) in atherosclerotic plaques. Accumulation of iron oxide-based nanomicelles in the plaque was demonstrated by fluorescence, MR imaging and electron microscopy. These findings demonstrate the possibility of utilising SMase as a mechanism to retain nanoprobes within plaques, thus opening up possibilities for future therapeutic interventions.


Asunto(s)
Aterosclerosis , Nanopartículas , Placa Aterosclerótica , Humanos , Esfingomielina Fosfodiesterasa , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/tratamiento farmacológico , Nanopartículas/uso terapéutico , Imagen por Resonancia Magnética/métodos
2.
Circ Genom Precis Med ; 16(5): 442-451, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37753640

RESUMEN

BACKGROUND: Patients with de novo chest pain, referred for evaluation of possible coronary artery disease (CAD), frequently have an absence of CAD resulting in millions of tests not having any clinical impact. The objective of this study was to investigate whether polygenic risk scores and targeted proteomics improve the prediction of absence of CAD in patients with suspected CAD, when added to the PROMISE (Prospective Multicenter Imaging Study for Evaluation of Chest Pain) minimal risk score (PMRS). METHODS: Genotyping and targeted plasma proteomics (N=368 proteins) were performed in 1440 patients with symptoms suspected to be caused by CAD undergoing coronary computed tomography angiography. Based on individual genotypes, a polygenic risk score for CAD (PRSCAD) was calculated. The prediction was performed using combinations of PRSCAD, proteins, and PMRS as features in models using stability selection and machine learning. RESULTS: Prediction of absence of CAD yielded an area under the curve of PRSCAD-model, 0.64±0.03; proteomic-model, 0.58±0.03; and PMRS model, 0.76±0.02. No significant correlation was found between the genetic and proteomic risk scores (Pearson correlation coefficient, -0.04; P=0.13). Optimal predictive ability was achieved by the full model (PRSCAD+protein+PMRS) yielding an area under the curve of 0.80±0.02 for absence of CAD, significantly better than the PMRS model alone (P<0.001). For reclassification purpose, the full model enabled down-classification of 49% (324 of 661) of the 5% to 15% pretest probability patients and 18% (113 of 611) of >15% pretest probability patients. CONCLUSIONS: For patients with chest pain and low-intermediate CAD risk, incorporating targeted proteomics and polygenic risk scores into the risk assessment substantially improved the ability to predict the absence of CAD. Genetics and proteomics seem to add complementary information to the clinical risk factors and improve risk stratification in this large patient group. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT02264717.


Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/genética , Proteómica , Estudios Prospectivos , Angiografía Coronaria/métodos , Factores de Riesgo , Dolor en el Pecho/diagnóstico , Dolor en el Pecho/genética
3.
Front Cardiovasc Med ; 10: 974918, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776254

RESUMEN

Introduction: The transmembrane protease A Disintegrin And Metalloproteinase 10 (ADAM10) displays a "pattern regulatory function," by cleaving a range of membrane-bound proteins. In endothelium, it regulates barrier function, leukocyte recruitment and angiogenesis. Previously, we showed that ADAM10 is expressed in human atherosclerotic plaques and associated with neovascularization. In this study, we aimed to determine the causal relevance of endothelial ADAM10 in murine atherosclerosis development in vivo. Methods and results: Endothelial Adam10 deficiency (Adam10 ecko ) in Western-type diet (WTD) fed mice rendered atherogenic by adeno-associated virus-mediated PCSK9 overexpression showed markedly increased atherosclerotic lesion formation. Additionally, Adam10 deficiency was associated with an increased necrotic core and concomitant reduction in plaque macrophage content. Strikingly, while intraplaque hemorrhage and neovascularization are rarely observed in aortic roots of atherosclerotic mice after 12 weeks of WTD feeding, a majority of plaques in both brachiocephalic artery and aortic root of Adam10ecko mice contained these features, suggestive of major plaque destabilization. In vitro, ADAM10 knockdown in human coronary artery endothelial cells (HCAECs) blunted the shedding of lectin-like oxidized LDL (oxLDL) receptor-1 (LOX-1) and increased endothelial inflammatory responses to oxLDL as witnessed by upregulated ICAM-1, VCAM-1, CCL5, and CXCL1 expression (which was diminished when LOX-1 was silenced) as well as activation of pro-inflammatory signaling pathways. LOX-1 shedding appeared also reduced in vivo, as soluble LOX-1 levels in plasma of Adam10ecko mice was significantly reduced compared to wildtypes. Discussion: Collectively, these results demonstrate that endothelial ADAM10 is atheroprotective, most likely by limiting oxLDL-induced inflammation besides its known role in pathological neovascularization. Our findings create novel opportunities to develop therapeutics targeting atherosclerotic plaque progression and stability, but at the same time warrant caution when considering to use ADAM10 inhibitors for therapy in other diseases.

4.
Arterioscler Thromb Vasc Biol ; 43(5): 637-649, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36794588

RESUMEN

BACKGROUND: To cause atherosclerosis, LDLs (low-density lipoproteins) must first pass through the endothelium and then become retained in the arterial matrix. Which of these two processes is rate-limiting and predicts the topography of plaque formation remains controversial. To investigate this issue, we performed high-resolution mapping of LDL entry and retention in murine aortic arches before and during atherosclerosis development. METHODS: Maps of LDL entry and retention were created by injecting fluorescently labeled LDL followed by near-infrared scanning and whole-mount confocal microscopy after 1 hour (entry) and 18 hours (retention). By comparing arches between normal mice and mice with short-term hypercholesterolemia, we analyzed changes in LDL entry and retention during the LDL accumulation phase that precedes plaque formation. Experiments were designed to secure equal plasma clearance of labeled LDL in both conditions. RESULTS: We found that LDL retention is the overall limiting factor for LDL accumulation but that the capacity for LDL retention varied substantially over surprisingly short distances. The inner curvature region, previously considered a homogenous atherosclerosis-prone region, consisted of dorsal and ventral zones with high capacity and a central zone with low capacity for continued LDL retention. These features predicted the temporal pattern of atherosclerosis, which first appeared in the border zones and later in the central zone. The limit to LDL retention in the central zone was intrinsic to the arterial wall, possibly caused by saturation of the binding mechanism, and was lost upon conversion to atherosclerotic lesions. CONCLUSIONS: Capacity for continued LDL retention varies over short distances and predicts where and when atherosclerosis develops in the mouse aortic arch.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Ratones , Animales , Lipoproteínas LDL , Aorta Torácica/patología , Aterosclerosis/patología , Hipercolesterolemia/metabolismo
5.
JACC Cardiovasc Imaging ; 15(6): 1124-1135, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35680220

RESUMEN

BACKGROUND: Carotid and femoral plaque burden is a recognized biomarker of cardiovascular disease risk. A new electronic-sweep 3-dimensional (3D)-matrix transducer method can improve the functionality and image quality of vascular ultrasound atherosclerosis imaging. OBJECTIVES: This study aimed to validate this method for plaque volume measurement in early and intermediate-advanced plaques in the carotid and femoral territories. METHODS: Plaque volumes were measured ex vivo in pig carotid and femoral artery specimens by 3-dimensional vascular ultrasound (3DVUS) using a 3D-matrix (electronic-sweep) transducer and its associated 3D plaque quantification software, and were compared with gold-standard histology. To test the clinical feasibility and accuracy of the 3D-matrix transducer, an experiment was conducted in intermediate-high risk individuals with carotid and femoral atherosclerosis. The results were compared with those obtained using the previously validated mechanical-sweep 3D transducer and established 2-dimensional (2D)-based plaque quantification software. RESULTS: In the ex vivo study, the authors assessed 19 atherosclerotic plaques (plaque volume, 0.76 µL-56.30 µL), finding strong agreement between measurements with the 3D-matrix transducer and the histological gold-standard (intraclass correlation coefficient [ICC]: 0.992; [95% CI: 0.978-0.997]). In the clinical analysis of 20 patients (mean age 74.6 ± 4.45 years; 40% men), the authors found 64 (36 carotid and 28 femoral) of 80 scanned territories with atherosclerosis (measured atherosclerotic volume, 10 µL-859 µL). There was strong agreement between measurements made from electronic-sweep and mechanical-sweep 3DVUS transducers (ICC: 0.997 [95% CI: 0.995-0.998]). Agreement was also high between plaque volumes estimated by the 2D and 3D plaque quantification software applications (ICC: 0.999 [95% CI: 0.998-0.999]). Analysis time was significantly shorter with the 3D plaque quantification software than with the 2D multislice approach with a mean time reduction of 46%. CONCLUSIONS: 3DVUS using new matrix transducer technology, together with improved 3D plaque quantification software, simplifies the accurate volume measurement of early (small) and intermediate-advanced plaques located in carotid and femoral arteries.


Asunto(s)
Aterosclerosis , Enfermedades de las Arterias Carótidas , Placa Aterosclerótica , Animales , Aterosclerosis/diagnóstico por imagen , Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Humanos , Imagenología Tridimensional/métodos , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Porcinos , Ultrasonografía/métodos
6.
Methods Mol Biol ; 2419: 461-473, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237981

RESUMEN

Induction of atherosclerosis in mice with one or more genetic alterations (e.g., conditional deletion of a gene of interest) has traditionally required crossbreeding with Apoe or Ldlr deficient mice to achieve sufficient hypercholesterolemia. However, this procedure is time consuming and generates a surplus of mice with genotypes that are irrelevant for experiments. Several alternative methods exist that obviate the need to work in mice with germline-encoded hypercholesterolemia. In this chapter, we detail an efficient and increasingly used method to induce hypercholesterolemia in mice through adeno-associated virus-mediated transfer of the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene.


Asunto(s)
Aterosclerosis , Proproteína Convertasa 9 , Animales , Aterosclerosis/genética , Dependovirus/genética , Mutación con Ganancia de Función , Ratones , Ratones Noqueados , Proproteína Convertasa 9/genética , Receptores de LDL/genética
7.
Arterioscler Thromb Vasc Biol ; 41(9): e427-e439, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34261328

RESUMEN

Objective: Atheromatous fibrous caps are produced by smooth muscle cells (SMCs) that are recruited to the subendothelial space. We tested whether the recruitment mechanisms are the same as in embryonic artery development, which relies prominently on Notch signaling to form the subendothelial medial SMC layers. Approach and Results: Notch elements were expressed in regions of fibrous cap in human and mouse plaques. To assess the causal role of Notch signaling in cap formation, we studied atherosclerosis in mice where the Notch pathway was inactivated in SMCs by conditional knockout of the essential effector transcription factor RBPJ (recombination signal-binding protein for immunoglobulin kappa J region). The recruitment of cap SMCs was significantly reduced without major effects on plaque size. Lineage tracing revealed the accumulation of SMC-derived plaque cells in the cap region was unaltered but that Notch-defective cells failed to re-acquire the SMC phenotype in the cap. Conversely, to analyze whether the loss of Notch signaling is required for SMC-derived cells to accumulate in atherogenesis, we studied atherosclerosis in mice with constitutive activation of Notch signaling in SMCs achieved by conditional expression of the Notch intracellular domain. Forced Notch signaling inhibited the ability of medial SMCs to contribute to plaque cells, including both cap SMCs and osteochondrogenic cells, and significantly reduced atherosclerosis development. Conclusions: Sequential loss and gain of Notch signaling is needed to build the cap SMC population. The shared mechanisms with embryonic arterial media assembly suggest that the cap forms as a neo-media that restores the connection between endothelium and subendothelial SMCs, transiently disrupted in early atherogenesis.


Asunto(s)
Aterosclerosis/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica , Receptores Notch/metabolismo , Túnica Media/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Arterias/metabolismo , Arterias/patología , Aterosclerosis/genética , Aterosclerosis/patología , Linaje de la Célula , Células Cultivadas , Progresión de la Enfermedad , Fibrosis , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fenotipo , Ratas , Receptores Notch/genética , Transducción de Señal , Túnica Media/patología
8.
Arterioscler Thromb Vasc Biol ; 41(10): e480-e490, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34289703

RESUMEN

Objective: 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) imaging is thought to visualize active atherosclerotic plaque calcification. This is supported by the binding of 18F-NaF to plaque calcification ex vivo, but no prior studies have examined binding of 18F-NaF to human-like plaque in vivo. Our aim was to validate the specificity of 18F-NaF PET for plaque calcifications in atherosclerotic minipigs. Approach and Results: Gain-of-function PCSK9D374Y (proprotein convertase/subtilisin kexin type 9) transgenic Yucatan minipigs (n=4) were fed high-fat diet for 2.5 years to develop atherosclerosis and then subjected to 18F-NaF PET/computed tomography imaging. The heart, aorta, and iliac arteries were immediately re-scanned ex vivo after surgical extraction. Lesions from the abdominal aorta, iliac arteries, and coronary arteries were cryo-sectioned for autoradiography. Histological plaque characteristics, PET/computed tomography signal, and autoradiography were linked through regression and co-localization analysis. Arterial 18F-NaF PET signal had intensities comparable to clinical scans and colocalized moderately with calcification detected by computed tomography. Histological analysis showed calcification spanning from microcalcifications near lipid pools and necrotic core to more homogenous macrocalcifications. Comparison with arteries from autopsy cases confirmed the resemblance in localization and appearance with early human plaque calcification. Regression analysis in the abdominal aorta showed correlations with calcified plaque but could not rule out contributions from noncalcified plaque. This was resolved by autoradiography, which showed specific accumulation in plaque calcifications in all examined arteries. In the context of porcine abdominal aorta, 18F-NaF PET imaging was, however, less accurate than computed tomography for detecting small calcifications. Conclusions: 18F-NaF accumulates specifically in calcifications of atherosclerotic plaques in vivo.


Asunto(s)
Aorta Abdominal/diagnóstico por imagen , Enfermedades de la Aorta/diagnóstico por imagen , Aterosclerosis/diagnóstico por imagen , Radioisótopos de Flúor , Arteria Ilíaca/diagnóstico por imagen , Placa Aterosclerótica , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Fluoruro de Sodio , Calcificación Vascular/diagnóstico por imagen , Animales , Animales Modificados Genéticamente , Aorta Abdominal/metabolismo , Aorta Abdominal/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Arteria Ilíaca/metabolismo , Arteria Ilíaca/patología , Necrosis , Valor Predictivo de las Pruebas , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Reproducibilidad de los Resultados , Porcinos/genética , Porcinos Enanos/genética , Calcificación Vascular/genética , Calcificación Vascular/metabolismo , Calcificación Vascular/patología
10.
J Am Coll Cardiol ; 77(5): 575-589, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33538256

RESUMEN

BACKGROUND: The mechanisms by which hypertension accelerates coronary artery disease are poorly understood. Patients with hypertension often have confounding humoral changes, and to date, no experimental models have allowed analysis of the isolated effect of pressure on atherosclerosis in a setting that recapitulates the dimensions and biomechanics of human coronary arteries. OBJECTIVES: This study sought to analyze the effect of pressure on coronary atherosclerosis and explore the underlying mechanisms. METHODS: Using inflatable suprarenal aortic cuffs, we increased mean arterial pressure by >30 mm Hg in the cephalad body part of wild-type and hypercholesterolemic proprotein convertase subtilisin kexin type 9 (PCSK9)D374Y Yucatan minipigs for >1 year. Caudal pressures remained normal. RESULTS: Under hypercholesterolemic conditions in PCSK9D374Y transgenic minipigs, cephalad hypertension accelerated coronary atherosclerosis to almost 5-fold with consistent development of fibroatheromas that were sufficiently large to cause stenosis on computed tomography angiography. This was caused by local pressure forces, because vascular beds shielded from hypertension, but exposed to the same humoral factors, showed no changes in lesion formation. The same experiment was conducted under normocholesterolemic conditions in wild-type minipigs to examine the underlying mechanisms. Hypertension produced clear changes in the arterial proteome with increased abundance of mechanical strength proteins and reduced levels of infiltrating plasma macromolecules. This was paralleled by increased smooth muscle cells and increased intimal accumulation of low-density lipoproteins in the coronary arteries. CONCLUSIONS: Increased pressure per se facilitates coronary atherosclerosis. Our data indicate that restructuring of the artery to match increased tensile forces in hypertension alters the passage of macromolecules and leads to increased intimal accumulation of low-density lipoproteins.


Asunto(s)
Presión Sanguínea/fisiología , Enfermedad de la Arteria Coronaria/fisiopatología , Hipertensión/fisiopatología , Lipoproteínas LDL/sangre , Flujo Sanguíneo Regional/fisiología , Animales , Animales Modificados Genéticamente , Biomarcadores/sangre , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/etiología , Modelos Animales de Enfermedad , Hipertensión/sangre , Hipertensión/complicaciones , Porcinos , Porcinos Enanos
11.
PLoS One ; 15(6): e0234131, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32502216

RESUMEN

BACKGROUND: Low plasma testosterone, either spontaneous or as a result of androgen deprivation therapy for prostate cancer, is associated with an increased risk of cardiovascular events. The underlying mechanism in humans is not understood. Experimental studies in mice have shown that castration facilitates atherogenesis and may increase signs of plaque vulnerability. Pigs used for translational atherosclerosis research have frequently been castrated for practical or commercial reasons, but the effect of castration on atherosclerosis has never been systematically evaluated in pigs. OBJECTIVE: To study the effect of castration on atherosclerotic plaque burden and type in genetically modified minipigs with hypercholesterolemia. METHODS: Newborn male Yucatan minipigs with transgenic overexpression of a human gain-of-function mutant of proprotein convertase subtilisin/kexin type 9 were randomized to undergo orchiectomy (n = 8) or serve as controls (n = 6). Minipigs were started on high-fat diet at 3 months of age and the amount and composition of atherosclerotic lesions were analyzed at 12 months of age. Plasma lipid profiles and behavioral parameters were also assessed. RESULTS: Plasma lipids were slightly affected to a more atherogenic profile by orchiectomy, but atherosclerotic lesion size was unaltered in the LAD, thoracic aorta, abdominal aorta, and iliac arteries. The distribution of lesion types (xanthomas, pathological intimal thickening and fibroatheromas) were also not statistically different between groups in any of the examined vascular territories. The abdominal aorta developed the most advanced stages of disease with reproducible fibroatheroma formation, and here it was found that the area of necrotic core was significantly increased in orchiectomized pigs compared with controls. Orchiectomy also reduced aggressive behavior. CONCLUSIONS: Castration does not alter the burden of atherosclerosis in hypercholesterolemic Yucatan minipigs, but may increase necrotic core area in fibroatheromas.


Asunto(s)
Aterosclerosis/patología , Hipercolesterolemia/patología , Animales , Animales Modificados Genéticamente , Aorta/patología , Aterosclerosis/complicaciones , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Humanos , Hipercolesterolemia/complicaciones , Hipercolesterolemia/genética , Arteria Ilíaca/patología , Lípidos/sangre , Masculino , Necrosis , Orquiectomía , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Porcinos , Porcinos Enanos , Testosterona/sangre
14.
J Am Coll Cardiol ; 74(9): 1220-1232, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31466620

RESUMEN

BACKGROUND: Arterial 18fluorodeoxyglucose (FDG) positron emission tomography (PET) is considered a measure of atherosclerotic plaque macrophages and is used for quantification of disease activity in clinical trials, but the distribution profile of FDG across macrophages and other arterial cells has not been fully clarified. OBJECTIVES: The purpose of this study was to analyze FDG uptake in different arterial tissues and their contribution to PET signal in normal and atherosclerotic arteries. METHODS: Wild-type and D374Y-PCSK9 transgenic Yucatan minipigs were fed a high-fat, high-cholesterol diet to induce atherosclerosis and subjected to a clinical FDG-PET and computed tomography scan protocol. Volumes of arterial media, intima/lesion, macrophage-rich, and hypoxic tissues were measured in serial histological sections. Distributions of FDG in macrophages and other arterial tissues were quantified using modeling of the in vivo PET signal. In separate transgenic minipigs, the intra-arterial localization of FDG was determined directly by autoradiography. RESULTS: Arterial FDG-PET signal appearance and intensity were similar to human imaging. The modeling approach showed high accuracy in describing the FDG-PET signal and revealed comparable FDG accumulation in macrophages and other arterial tissues, including medial smooth muscle cells. These findings were verified directly by autoradiography of normal and atherosclerotic arteries. CONCLUSIONS: FDG is taken up comparably in macrophage-rich and -poor arterial tissues in minipigs. This offers a mechanistic explanation to a growing number of observations in clinical imaging studies that have been difficult to reconcile with macrophage-selective FDG uptake.


Asunto(s)
Arterias/diagnóstico por imagen , Arterias/metabolismo , Aterosclerosis/metabolismo , Fluorodesoxiglucosa F18/farmacocinética , Tomografía de Emisión de Positrones , Radiofármacos/farmacocinética , Animales , Femenino , Masculino , Porcinos , Porcinos Enanos , Distribución Tisular
15.
Atherosclerosis ; 286: 156-162, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30871723

RESUMEN

BACKGROUND AND AIMS: Type 1 diabetes accelerates the development of atherosclerotic cardiovascular diseases. Retention of low-density lipoprotein (LDL) in the arterial wall is a causal step in atherogenesis, but it is unknown whether diabetes alters the propensity of LDL for retention. The present study investigated whether LDL from type 1 diabetic and healthy non-diabetic subjects differed in their ability to bind to the arterial wall in a type 1 diabetic mouse model. METHODS: Fluorescently-labeled LDL obtained from type 1 diabetic patients or healthy controls was injected into mice with type 1 diabetes. The amount of retained LDL in the atherosclerosis-prone inner curvature of the aortic arch was quantified by fluorescence microscopy. Healthy control LDL was in vitro glycated, analyzed for protein glycation by LC-MS/MS, and tested for retention propensity. RESULTS: Retention of LDL from type 1 diabetic patients was 4.35-fold higher compared to LDL from nondiabetic subjects. Nuclear magnetic resonance (NMR) spectroscopy analysis of LDL revealed no differences in the concentration of the atherogenic small dense LDL between type 1 diabetic and non-diabetic subjects. In vitro glycation of LDL from a non-diabetic subject increased retention compared to non-glycated LDL. LC-MS/MS revealed four new glycated spots in the protein sequence of ApoB of in vitro glycated LDL. CONCLUSIONS: LDL from type 1 diabetic patients showed increased retention at atherosclerosis-prone sites in the arterial wall of diabetic mice. Glycation of LDL is one modification that may increase retention, but other, yet unknown, mechanisms are also likely to contribute.


Asunto(s)
Arterias/metabolismo , Aterosclerosis/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Lipoproteínas LDL/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Humanos , Masculino , Ratones
16.
Am J Nucl Med Mol Imaging ; 9(1): 1-11, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30911433

RESUMEN

Autoradiography using phosphor imaging screens is often used to characterize tissue distribution of positron emission tomography (PET) radiotracers. PET tracers emit positrons with limited penetration range, and valid quantitative autoradiography can therefore only be achieved in thin tissue slices. However, in some settings, quantitative tracer profiling in thick tissues is required. Our aim was to develop a reliable method for this purpose. In this paper, we present a method based on total intensity projections (TIPs) of PET and computed tomography (CT) images. We show theoretically and experimentally that tissue total activity and tissue volume maps can be derived from the TIPs of PET and CT images, respectively. We also show that these maps are free of signal displacement artifacts in the direction of projection. To demonstrate the utility of the approach, we obtain and compare TIP-based maps and autoradiography of ex-vivo atherosclerotic minipig aortas following in-vivo injection of 18F-fluorodeoxyglucose. We show that autoradiography of the thick aortas yields distorted results due to positron range effects, whereas TIP-mapping is free from such bias. The TIP-based maps may, thus, provide a low-resolution alternative to autoradiography, when tracer accumulation profiling in thick tissues is required.

17.
EuroIntervention ; 14(10): 1129-1135, 2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29616625

RESUMEN

AIMS: In vivo validation of coronary optical coherence tomography (OCT) against histology and the effects of plaque burden (PB) on plaque classification remain unreported. We aimed to investigate this in a porcine model with human-like coronary atherosclerosis. METHODS AND RESULTS: Five female Yucatan D374Y-PCSK9 transgenic hypercholesterolaemic minipigs were implanted with a coronary shear-modifying stent to induce advanced atherosclerosis. OCT frames (n=201) were obtained 34 weeks after implantation. Coronary arteries were perfusion-fixed, serially sectioned and co-registered with OCT using a validated algorithm. Lesions were adjudicated using the Virmani classification and PB assessed from histology. OCT had a high sensitivity, but modest specificity (92.9% and 74.6%), for identifying fibrous cap atheroma (FCA). The reduced specificity for OCT was due to misclassification of plaques with histologically defined pathological intimal thickening (PIT) as FCA (46.1% of the frames with histological PIT were misclassified). PIT lesions misclassified as FCA by OCT had a statistically higher PB than in other OCT frames (median 32.0% versus 13.4%; p<0.0001). Misclassification of PIT lesions by OCT occurred when PB exceeded approximately 20%. CONCLUSIONS: Compared with histology, in vivo OCT classification of FCA had high sensitivity but reduced specificity due to misclassification of PITs with high PB.


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Animales , Vasos Coronarios , Femenino , Humanos , Proproteína Convertasa 9 , Porcinos , Tomografía de Coherencia Óptica
18.
Circulation ; 138(3): 266-282, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29490993

RESUMEN

BACKGROUND: Progerin, an aberrant protein that accumulates with age, causes the rare genetic disease Hutchinson-Gilford progeria syndrome (HGPS). Patients who have HGPS exhibit ubiquitous progerin expression, accelerated aging and atherosclerosis, and die in their early teens, mainly of myocardial infarction or stroke. The mechanisms underlying progerin-induced atherosclerosis remain unexplored, in part, because of the lack of appropriate animal models. METHODS: We generated an atherosclerosis-prone model of HGPS by crossing apolipoprotein E-deficient (Apoe-/-) mice with LmnaG609G/G609G mice ubiquitously expressing progerin. To induce progerin expression specifically in macrophages or vascular smooth muscle cells (VSMCs), we crossed Apoe-/-LmnaLCS/LCS mice with LysMCre and SM22αCre mice, respectively. Progerin expression was evaluated by polymerase chain reaction and immunofluorescence. Cardiovascular alterations were determined by immunofluorescence and histology in male mice fed normal chow or a high-fat diet. In vivo low-density lipoprotein retention was assessed by intravenous injection of fluorescently labeled human low-density lipoprotein. Cardiac electric defects were evaluated by electrocardiography. RESULTS: Apoe-/-LmnaG609G/G609G mice with ubiquitous progerin expression exhibited a premature aging phenotype that included failure to thrive and shortened survival. In addition, high-fat diet-fed Apoe-/-LmnaG609G/G609G mice developed a severe vascular pathology, including medial VSMC loss and lipid retention, adventitial fibrosis, and accelerated atherosclerosis, thus resembling most aspects of cardiovascular disease observed in patients with HGPS. The same vascular alterations were also observed in Apoe-/-LmnaLCS/LCSSM22αCre mice expressing progerin specifically in VSMCs, but not in Apoe-/-LmnaLCS/LCSLysMCre mice with macrophage-specific progerin expression. Moreover, Apoe-/-LmnaLCS/LCSSM22αCre mice had a shortened lifespan despite the lack of any overt aging phenotype. Aortas of ubiquitously and VSMC-specific progerin-expressing mice exhibited increased retention of fluorescently labeled human low-density lipoprotein, and atheromata in both models showed vulnerable plaque features. Immunohistopathological examination indicated that Apoe-/-LmnaLCS/LCSSM22αCre mice, unlike Apoe-/-LmnaG609G/G609G mice, die of atherosclerosis-related causes. CONCLUSIONS: We have generated the first mouse model of progerin-induced atherosclerosis acceleration, and demonstrate that restricting progerin expression to VSMCs is sufficient to accelerate atherosclerosis, trigger plaque vulnerability, and reduce lifespan. Our results identify progerin-induced VSMC death as a major factor triggering atherosclerosis and premature death in HGPS.


Asunto(s)
Aorta/patología , Arteriosclerosis/metabolismo , Lamina Tipo A/genética , Músculo Liso Vascular/metabolismo , Progeria/metabolismo , Animales , Arteriosclerosis/genética , Senescencia Celular , Modelos Animales de Enfermedad , Humanos , Lamina Tipo A/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Ratones Transgénicos , Músculo Liso Vascular/patología , Progeria/genética
19.
Cardiovasc Res ; 114(4): 492-500, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29293902

RESUMEN

Advances in lineage-tracking techniques have provided new insights into the origins and fates of smooth muscle cells (SMCs) in atherosclerosis. Yet new tools present new challenges for data interpretation that require careful consideration of the strengths and weaknesses of the methods employed. At the same time, discoveries in other fields have introduced new perspectives on longstanding questions about steps in atherogenesis that remain poorly understood. In this article, we address both the challenges and opportunities for a better understanding of the mechanisms by which cells appearing as or deriving from SMCs accumulate in atherosclerosis.


Asunto(s)
Aterosclerosis/patología , Diferenciación Celular , Linaje de la Célula , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Actinas/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , Biomarcadores/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Neovascularización Fisiológica , Fenotipo , Transducción de Señal
20.
Sci Rep ; 7(1): 11670, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916789

RESUMEN

Although A Disintegrin And Metalloproteinase 8 (ADAM8) is not crucial for tissue development and homeostasis, it has been implicated in various inflammatory diseases by regulating processes like immune cell recruitment and activation. ADAM8 expression has been associated with human atherosclerosis development and myocardial infarction, however a causal role of ADAM8 in atherosclerosis has not been investigated thus far. In this study, we examined the expression of ADAM8 in early and progressed human atherosclerotic lesions, in which ADAM8 was significantly upregulated in vulnerable lesions. In addition, ADAM8 expression was most prominent in the shoulder region of human atherosclerotic lesions, characterized by the abundance of foam cells. In mice, Adam8 was highly expressed in circulating neutrophils and in macrophages. Moreover, ADAM8 deficient mouse macrophages displayed reduced secretion of inflammatory mediators. Remarkably, however, neither hematopoietic nor whole-body ADAM8 deficiency in mice affected atherosclerotic lesion size. Additionally, except for an increase in granulocyte content in plaques of ADAM8 deficient mice, lesion morphology was unaffected. Taken together, whole body and hematopoietic ADAM8 does not contribute to advanced atherosclerotic plaque development, at least in female mice, although its expression might still be valuable as a diagnostic/prognostic biomarker to distinguish between stable and unstable lesions.


Asunto(s)
Proteínas ADAM/análisis , Proteínas ADAM/deficiencia , Aterosclerosis/fisiopatología , Proteínas de la Membrana/análisis , Proteínas de la Membrana/deficiencia , Placa Aterosclerótica/patología , Animales , Antígenos CD , Arterias Carótidas/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Macrófagos/química , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...