Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 359(6378): 900-904, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29472480

RESUMEN

Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.

2.
Hypertension ; 69(6): 1128-1135, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28461604

RESUMEN

The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may indicate heterodimerization of these receptors. Therefore, this study investigated the molecular and functional interplay between MAS and the AT2R. Molecular interactions were assessed by fluorescence resonance energy transfer and by cross correlation spectroscopy in human embryonic kidney-293 cells transfected with vectors encoding fluorophore-tagged MAS or AT2R. Functional interaction of AT2R and MAS was studied in astrocytes with CX3C chemokine receptor-1 messenger RNA expression as readout. Coexpression of fluorophore-tagged AT2R and MAS resulted in a fluorescence resonance energy transfer efficiency of 10.8 ± 0.8%, indicating that AT2R and MAS are capable to form heterodimers. Heterodimerization was verified by competition experiments using untagged AT2R and MAS. Specificity of dimerization of AT2R and MAS was supported by lack of dimerization with the transient receptor potential cation channel, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1-7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked by an AT2R antagonist (PD123319) and also by a MAS antagonist (A-779). Knockout of a single of these receptors made astrocytes unresponsive for both agonists. Our results suggest that MAS and the AT2R form heterodimers and that-at least in astrocytes-both receptors functionally depend on each other.


Asunto(s)
Imidazoles/farmacología , Piridinas/farmacología , Receptor Cross-Talk/fisiología , Receptor de Angiotensina Tipo 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Análisis de Varianza , Animales , Astrocitos/metabolismo , Células Cultivadas , Fluorescencia , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis Espectral/métodos , Transfección
3.
Sci Rep ; 7: 43269, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28233809

RESUMEN

Estrogen receptor alpha (ERα) is a major regulator of metabolic processes in obesity. In this study we aimed to define the relevance of adipose tissue ERα during high-fat diet (HFD)-induced obesity using female aP2-Cre-/+/ERαfl/fl mice (atERαKO). HFD did not affect body weight or glucose metabolism in atERαKO- compared to control mice. Surprisingly, HFD feeding markedly increased mortality in atERαKO mice associated with a destructive bacterial infection of the uterus driven by commensal microbes, an alteration likely explaining the absence of a metabolic phenotype in HFD-fed atERαKO mice. In order to identify a mechanism of the exaggerated uterine infection in HFD-fed atERαKO mice, a marked reduction of uterine M2-macrophages was detected, a cell type relevant for anti-microbial defence. In parallel, atERαKO mice exhibited elevated circulating estradiol (E2) acting on E2-responsive tissue/cells such as macrophages. Accompanying cell culture experiments showed that despite E2 co-administration stearic acid (C18:0), a fatty acid elevated in plasma from HFD-fed atERαKO mice, blocks M2-polarization, a process known to be enhanced by E2. In this study we demonstrate an unexpected phenotype in HFD-fed atERαKO involving severe uterine bacterial infections likely resulting from a previously unknown negative interference between dietary FAs and ERα-signaling during anti-microbial defence.


Asunto(s)
Tejido Adiposo/metabolismo , Infecciones Bacterianas/etiología , Dieta Alta en Grasa , Receptor alfa de Estrógeno/metabolismo , Cervicitis Uterina/microbiología , Animales , Células Cultivadas , Receptor alfa de Estrógeno/genética , Femenino , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Fagocitosis , Transducción de Señal , Cervicitis Uterina/metabolismo
4.
J Cardiovasc Pharmacol ; 67(5): 402-11, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26859196

RESUMEN

Pharmacological blockade of mineralocorticoid receptors (MR) is known as an efficacious therapy in chronic heart failure. Therapy with steroidal MR antagonists such as spironolactone or eplerenone (EPL) is often limited because of side effects. Recently, a new highly selective and potent, nonsteroidal MR antagonist, finerenone (FIN), has been developed. To investigate the effects of FIN on pressure-induced cardiac hypertrophy, the transverse aortic constriction (TAC) model was used in C57BL/6 mice treated with FIN (10 mg·kg·d), EPL (200 mg·kg·d) or vehicle (VEH). First, we analyzed cardiac gene expression 4 weeks after TAC using a pathway-focused quantitative polymerase chain reaction array. FIN caused a distinct cardiac gene expression profile compared to VEH and EPL, including differential expression of BNP (brain natriuretic peptide) and Tnnt2 (troponin T type 2). FIN treatment led to a significant reduction of TAC-induced left ventricular (LV) wall thickening assessed by echocardiography. In accordance, FIN-treated mice showed a significant lower increase of calculated left ventricular mass compared with VEH- and EPL-treated mice (FIN: 28.4 ± 3.7 mg; EPL: 38.4 ± 4.3 mg; VEH: 39.3 ± 3.1 mg; P < 0.05). These data show beneficial effects of nonsteroidal MR antagonism by FIN on left ventricular mass development in pressure overload associated with a distinct cardiac gene expression profile.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Cardiomegalia/fisiopatología , Antagonistas de Receptores de Mineralocorticoides/farmacología , Naftiridinas/farmacología , Espironolactona/análogos & derivados , Animales , Modelos Animales de Enfermedad , Eplerenona , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Péptido Natriurético Encefálico/metabolismo , Espironolactona/farmacología , Troponina T/metabolismo , Remodelación Ventricular/efectos de los fármacos
5.
J Biol Chem ; 290(39): 23603-15, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26260790

RESUMEN

Endurance exercise training induces substantial adaptive cardiac modifications such as left ventricular hypertrophy (LVH). Simultaneously to the development of LVH, adipose tissue (AT) lipolysis becomes elevated upon endurance training to cope with enhanced energy demands. In this study, we investigated the impact of adipose tissue lipolysis on the development of exercise-induced cardiac hypertrophy. Mice deficient for adipose triglyceride lipase (Atgl) in AT (atATGL-KO) were challenged with chronic treadmill running. Exercise-induced AT lipolytic activity was significantly reduced in atATGL-KO mice accompanied by the absence of a plasma fatty acid (FA) increase. These processes were directly associated with a prominent attenuation of myocardial FA uptake in atATGL-KO and a significant reduction of the cardiac hypertrophic response to exercise. FA serum profiling revealed palmitoleic acid (C16:1n7) as a new molecular co-mediator of exercise-induced cardiac hypertrophy by inducing nonproliferative cardiomyocyte growth. In parallel, serum FA analysis and echocardiography were performed in 25 endurance athletes. In consonance, the serum C16:1n7 palmitoleate level exhibited a significantly positive correlation with diastolic interventricular septum thickness in those athletes. No correlation existed between linoleic acid (18:2n6) and diastolic interventricular septum thickness. Collectively, our data provide the first evidence that adipose tissue lipolysis directly promotes the development of exercise-induced cardiac hypertrophy involving the lipokine C16:1n7 palmitoleate as a molecular co-mediator. The identification of a lipokine involved in physiological cardiac growth may help to develop future lipid-based therapies for pathological LVH or heart failure.


Asunto(s)
Tejido Adiposo/metabolismo , Cardiomegalia/etiología , Ácidos Grasos Monoinsaturados/metabolismo , Lipólisis , Condicionamiento Físico Animal , Animales , Cardiomegalia/metabolismo , Línea Celular , Ratones , Ratones Noqueados
6.
Am J Physiol Heart Circ Physiol ; 305(2): H211-8, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23666673

RESUMEN

In the present study we investigated the influence of sex difference on the development of left ventricular hypertrophy (LVH) during obesity. Male and female C57BL/6J mice were fed for 15 and 25 wk with a high-fat diet (HFD) or low-fat control diet (LFD). Analysis of body composition, monitoring of body weight (BW), and echocardiographic analysis were performed, as well as analysis of expression of different adipocytokines in epicardial adipose tissue. The increment in left ventricular mass (LVM) after HFD (25 wk) was significantly stronger in male mice compared with female mice [LVM: male, 116.9 ± 2.9 (LFD) vs. 142.2 ± 9.3 mg (HFD); female, 84.3 ± 3.3 (LFD) vs. 93.9 ± 1.7 mg (HFD), Psex < 0.01]. In parallel, males developed a higher BW and fat mass after 25 wk HFD than female mice [BW: male, 33 ± 0.9 (LFD) vs. 53 ± 0.8 g (HFD); fat mass: male, 8.8 ± 0.9 (LFD) vs. 22.8 ± 0.7 g (HFD); BW: female, 22.5 ± 0.4 (LFD) vs. 33.7 ± 1.3 g (HFD); fat mass: female, 4.0 ± 0.2 (LFD) vs. 13.2 ± 1.2 g (HFD)] (P < 0.01 for BW+ fat mass female vs. male). The mRNA expression of adipocytokines in epicardial fat after 25 wk of diet showed higher levels of adiponectin (2.8-fold), leptin (4.2-fold), and vaspin (11.9-fold) in male mice compared with female mice (P < 0.05). To identify new adipose-derived molecular mediators of LVH, we further elucidated the cardiac impact of vaspin. Murine primary cardiac fibroblast proliferation was significantly induced by vaspin (1.8-fold, vaspin 1 µg/l, P < 0.05 vs. control) compared with 1.9-fold induction by angiotensin II (10 µM). The present study demonstrates a sex-dependent regulation of diet-induced LVH associated with sexual dimorphic expression of adipocytokines in epicardial adipose tissue.


Asunto(s)
Hipertrofia Ventricular Izquierda/etiología , Obesidad/complicaciones , Adipoquinas/genética , Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiopatología , Adiposidad , Animales , Proliferación Celular , Células Cultivadas , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Obesidad/genética , Obesidad/metabolismo , Obesidad/fisiopatología , Factores de Riesgo , Caracteres Sexuales , Factores Sexuales , Factores de Tiempo , Ultrasonografía , Aumento de Peso
7.
Handb Exp Pharmacol ; (214): 387-410, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23027460

RESUMEN

The influence of sex on the development of obesity, Type 2 Diabetes Mellitus (T2DM), and dyslipidemia is well documented, although the molecular mechanism underlying those differences reminds elusive. Ligands of peroxisome proliferator-activated receptors (PPARs) are used as oral antidiabetics (PPARgamma agonists: thiazolidinediones, TZDs), or for the treatment of dyslipidemia and cardiovascular diseases, due to their lipid-lowering properties (PPARalpha agonists: fibrates), as PPARs control transcription of a set of genes involved in the regulation of lipid and carbohydrate metabolism. Given a high prevalence of those metabolic disorders, and thus a broad use of PPAR agonists, the present review will discuss distinct aspects of sex-specific differences in antiobesity treatment using those groups of PPAR ligands.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dislipidemias/tratamiento farmacológico , PPAR alfa/agonistas , PPAR gamma/agonistas , Caracteres Sexuales , Animales , Femenino , Humanos , Masculino , PPAR gamma/genética , Polimorfismo Genético , Tiazolidinedionas/efectos adversos , Tiazolidinedionas/uso terapéutico
8.
PLoS One ; 7(5): e37794, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22662224

RESUMEN

BACKGROUND: Successful reduction of body weight (BW) is often followed by recidivism to obesity. BW-changes including BW-loss and -regain is associated with marked alterations in energy expenditure (EE) and adipose tissue (AT) metabolism. Since these processes are sex-specifically controlled, we investigated sexual dimorphisms in metabolic processes during BW-dynamics (gain-loss-regain). RESEARCH DESIGN: Obesity was induced in C57BL/6J male (m) and female (f) mice by 15 weeks high-fat diet (HFD) feeding. Subsequently BW was reduced (-20%) by caloric restriction (CR) followed by adaptive feeding, and a regain-phase. Measurement of EE, body composition, blood/organ sampling were performed after each feeding period. Lipolysis was analyzed ex-vivo in gonadal AT. RESULTS: Male mice exhibited accelerated BW-gain compared to females (relative BW-gain m:140.5±3.2%; f:103.7±6.5%; p<0.001). In consonance, lean mass-specific EE was significantly higher in females compared to males during BW-gain. Under CR female mice reached their target-BW significantly faster than male mice (m:12.2 days; f:7.6 days; p<0.001) accompanied by a sustained sex-difference in EE. In addition, female mice predominantly downsized gonadal AT whereas the relation between gonadal and total body fat was not altered in males. Accordingly, only females exhibited an increased rate of forskolin-stimulated lipolysis in AT associated with significantly higher glycerol concentrations, lower RER-values, and increased AT expression of adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL). Analysis of AT lipolysis in estrogen receptor alpha (ERα)-deficient mice revealed a reduced lipolytic rate in the absence of ERα exclusively in females. Finally, re-feeding caused BW-regain faster in males than in females. CONCLUSION: The present study shows sex-specific dynamics during BW-gain-loss-regain. Female mice responded to CR with an increase in lipolytic activity, and augmented lipid-oxidation leading to more efficient weight loss. These processes likely involve ERα-dependent signaling in AT and sexual dimorphic regulation of genes involved in lipid metabolism.


Asunto(s)
Tejido Adiposo/metabolismo , Peso Corporal , Lipólisis , Animales , Dieta Alta en Grasa , Receptor alfa de Estrógeno/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Factores Sexuales , Aumento de Peso , Pérdida de Peso
9.
Hum Mol Genet ; 21(17): 3845-57, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22692684

RESUMEN

Nob3 is a major obesity quantitative trait locus (QTL) identified in an intercross of New Zealand Obese (NZO) mice with C57BL/6J (B6), and by introgression of its 38 Mbp peak region into B6 (B6.NZO-Nob3.38). B6.NZO-Nob3.38 mice carrying the NZO allele exhibited markedly increased body weight, fat mass, lean mass and a lower energy expenditure, than the corresponding B6 allele carriers. For positional cloning of the responsible obesity gene, five additional congenic lines (RCS) were generated and characterized, allowing to define a critical genomic interval comprising 43 genes. mRNA profiling and western blotting indicated that Ifi202b, a member of the Ifi200 family of interferon inducible transcriptional modulators, was expressed in NZO-allele carriers but was undetectable in tissues of homozygous B6-allele carriers due to a microdeletion, including the first exon and the 5'-flanking region of Ifi202b in B6. Transcriptome analysis of adipose tissue of RCS revealed a marked induction of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-Hsd1) expression in mice expressing Ifi202b. Furthermore, siRNA-mediated Ifi202b suppression in 3T3-L1 adipocytes resulted in a significant inhibition of 11ß-Hsd1 expression, whereas an adenoviral-mediated overexpression of Ifi202b increased 11ß-Hsd1 mRNA levels. Expression of human IFI orthologues was significantly increased in visceral adipose tissue of obese subjects. We suggest that the disruption of Ifi202b in B6 is responsible for the effects of the obesity QTL Nob3, and that Ifi202b modulates fat accumulation through expression of adipogenic genes such as 11ß-Hsd1.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Deleción Cromosómica , Cromosomas Humanos Par 1/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Obesidad/enzimología , Obesidad/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Región de Flanqueo 5'/genética , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Peso Corporal/genética , Exones/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Persona de Mediana Edad , Familia de Multigenes/genética , Sitios de Carácter Cuantitativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Recombinación Genética/genética , Adulto Joven
10.
Diabetes ; 61(2): 513-23, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22210316

RESUMEN

In the current study, we investigated the importance of histone deacetylase (HDAC)6 for glucocorticoid receptor-mediated effects on glucose metabolism and its potential as a therapeutic target for the prevention of glucocorticoid-induced diabetes. Dexamethasone-induced hepatic glucose output and glucocorticoid receptor translocation were analyzed in wild-type (wt) and HDAC6-deficient (HDAC6KO) mice. The effect of the specific HDAC6 inhibitor tubacin was analyzed in vitro. wt and HDAC6KO mice were subjected to 3 weeks' dexamethasone treatment before analysis of glucose and insulin tolerance. HDAC6KO mice showed impaired dexamethasone-induced hepatic glucocorticoid receptor translocation. Accordingly, dexamethasone-induced expression of a large number of hepatic genes was significantly attenuated in mice lacking HDAC6 and by tubacin in vitro. Glucose output of primary hepatocytes from HDAC6KO mice was diminished. A significant improvement of dexamethasone-induced whole-body glucose intolerance as well as insulin resistance in HDAC6KO mice compared with wt littermates was observed. This study demonstrates that HDAC6 is an essential regulator of hepatic glucocorticoid-stimulated gluconeogenesis and impairment of whole-body glucose metabolism through modification of glucocorticoid receptor nuclear translocation. Selective pharmacological inhibition of HDAC6 may provide a future therapeutic option against the prodiabetogenic actions of glucocorticoids.


Asunto(s)
Dexametasona/farmacología , Gluconeogénesis/efectos de los fármacos , Histona Desacetilasas/fisiología , Hígado/metabolismo , Acetilación , Transporte Activo de Núcleo Celular , Tejido Adiposo/metabolismo , Animales , Corticosterona/sangre , Glucosa/metabolismo , Histona Desacetilasa 6 , Histonas/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/fisiología , Receptores de Glucocorticoides/metabolismo
11.
Circ Res ; 110(3): 394-405, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22207709

RESUMEN

RATIONALE: The nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of gene transcription in vascular cells and mediates the vascular protection observed with antidiabetic glitazones. OBJECTIVE: To determine the molecular mechanism of ligand-dependent transrepression in vascular smooth muscle cells and their impact on the vascular protective actions of PPARγ. METHODS AND RESULTS: Here, we report a molecular pathway in vascular smooth muscle cells by which ligand-activated PPARγ represses transcriptional activation of the matrix-degrading matrix metalloproteinase-9 (MMP-9) gene, a crucial mediator of vascular injury. PPARγ-mediated transrepression of the MMP-9 gene was dependent on the presence of the high-mobility group A1 (HMGA1) protein, a gene highly expressed in vascular smooth muscle cells, newly identified by oligonucleotide array expression analysis. Transrepression of MMP-9 by PPARγ and regulation by HMGA1 required PPARγ SUMOylation at K367. This process was associated with formation of a complex between PPARγ, HMGA1, and the SUMO E2 ligase Ubc9 (ubiquitin-like protein SUMO-1 conjugating enzyme). After PPARγ ligand stimulation, HMGA1 and PPARγ were recruited to the MMP-9 promoter, which facilitated binding of SMRT (silencing mediator of retinoic acid and thyroid hormone receptor), a nuclear corepressor involved in transrepression. The relevance of HMGA1 for vascular PPARγ signaling was underlined by the complete absence of vascular protection through a PPARγ ligand in HMGA1(-/-) mice after arterial wire injury. CONCLUSIONS: The present data suggest that ligand-dependent formation of HMGA1-Ubc9-PPARγ complexes facilitates PPARγ SUMOylation, which results in the prevention of SMRT corepressor clearance and induction of MMP-9 transrepression. These data provide new information on PPARγ-dependent vascular transcriptional regulation and help us to understand the molecular consequences of therapeutic interventions with PPARγ ligands in the vasculature.


Asunto(s)
Proteína HMGA1a/metabolismo , Músculo Liso Vascular/metabolismo , PPAR gamma/metabolismo , Transducción de Señal/fisiología , Transcripción Genética/fisiología , Animales , Endotelina-1/metabolismo , Arteria Femoral/efectos de los fármacos , Arteria Femoral/lesiones , Arteria Femoral/metabolismo , Proteína HMGA1a/deficiencia , Proteína HMGA1a/genética , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Noqueados , Modelos Animales , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/lesiones , FN-kappa B/metabolismo , Tiazolidinedionas/farmacología , Enzimas Ubiquitina-Conjugadoras/metabolismo
12.
Am J Physiol Heart Circ Physiol ; 301(1): H115-22, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21478409

RESUMEN

Exercise-induced cardiac hypertrophy has been recently identified to be regulated in a sex-specific manner. In parallel, women exhibit enhanced exercise-mediated lipolysis compared with men, which might be linked to cardiac responses. The aim of the present study was to assess if previously reported sex-dependent differences in the cardiac hypertrophic response during exercise are associated with differences in cardiac energy substrate availability/utilization. Female and male C57BL/6J mice were challenged with active treadmill running for 1.5 h/day (0.25 m/s) over 4 wk. Mice underwent cardiac and metabolic phenotyping including echocardiography, small-animal PET, peri-exercise indirect calorimetry, and analysis of adipose tissue (AT) lipolysis and cardiac gene expression. Female mice exhibited increased cardiac hypertrophic responses to exercise compared with male mice, measured by echocardiography [percent increase in left ventricular mass (LVM): female: 22.2 ± 0.8%, male: 9.0 ± 0.2%; P < 0.05]. This was associated with increased plasma free fatty acid (FFA) levels and augmented AT lipolysis in female mice after training, whereas FFA levels from male mice decreased. The respiratory quotient during exercise was significantly lower in female mice indicative for preferential utilization of fatty acids. In parallel, myocardial glucose uptake was reduced in female mice after exercise, analyzed by PET {injection dose (ID)/LVM [%ID/g]: 36.8 ± 3.5 female sedentary vs. 28.3 ± 4.3 female training; P < 0.05}, whereas cardiac glucose uptake was unaltered after exercise in male counterparts. Cardiac genes involved in fatty acid uptake/oxidation in females were increased compared with male mice. Collectively, our data demonstrate that sex differences in exercise-induced cardiac hypertrophy are associated with changes in cardiac substrate availability and utilization.


Asunto(s)
Cardiomegalia/fisiopatología , Metabolismo Energético/fisiología , Condicionamiento Físico Animal/fisiología , Tejido Adiposo/metabolismo , Animales , Western Blotting , Calorimetría , Cardiomegalia/diagnóstico por imagen , Ecocardiografía , Femenino , Fluorodesoxiglucosa F18 , Glucosa/metabolismo , Glucógeno/metabolismo , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/fisiopatología , Ácido Láctico/metabolismo , Lipólisis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Tomografía de Emisión de Positrones , ARN/biosíntesis , ARN/genética , Radiofármacos , Carrera/fisiología , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...