Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microb Ecol ; 86(4): 2515-2526, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37392204

RESUMEN

Bacillus thuringiensis is a Gram-positive aerobic bacterium and the most used biopesticide worldwide. Given the importance of B. thuringiensis strain characterization for the development of new bioinsecticides or transgenic events and the identification and classification of new B. thuringiensis genes and strains to understand its distribution and diversity, this work is aimed at creating a gene identification system based on qPCR reactions utilizing core B. thuringiensis genes cry1, cry2, cry3, cry4, cry5, app6, cry7, cry8, cry9, cry10, cry11, vpb1, vpa2, vip3, cyt1, and cyt2 for the characterization of 257 strains of B. thuringiensis. This system was based on the Invertebrate Bacteria Collection from Embrapa Genetic Resources and Biotechnology and analyzed (a) the degree of correlation between the distribution of these strains and the origin of the substrate from which the strain was isolated and (b) between its distribution and geoclimatic conditions. This study made it possible to observe that the cry1, cry2, and vip3A/B genes occur homogeneously in the Brazilian territory, and some genes are found in specific regions. The biggest reservoir of variability is within B. thuringiensis strains in each region, and it is suggested that both geoclimatic conditions and regional crops interfere with the genetic diversity of the B. thuringiensis strains present in the region, and B. thuringiensis strains can constantly exchange genetic information.


Asunto(s)
Bacillus thuringiensis , Animales , Bacillus thuringiensis/genética , Endotoxinas/genética , Endotoxinas/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Toxinas de Bacillus thuringiensis , Brasil , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Insectos , Variación Genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química
2.
Viruses ; 15(2)2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36851739

RESUMEN

RNA viruses are known to induce a wide variety of respiratory tract illnesses, from simple colds to the latest coronavirus pandemic, causing effects on public health and the economy worldwide. Influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (MPV), respiratory syncytial virus (RSV), rhinovirus (RhV), and coronavirus (CoV) are some of the most notable RNA viruses. Despite efforts, due to the high mutation rate, there are still no effective and scalable treatments that accompany the rapid emergence of new diseases associated with respiratory RNA viruses. Host-directed therapies have been applied to combat RNA virus infections by interfering with host cell factors that enhance the ability of immune cells to respond against those pathogens. The reprogramming of immune cell metabolism has recently emerged as a central mechanism in orchestrated immunity against respiratory viruses. Therefore, understanding the metabolic signature of immune cells during virus infection may be a promising tool for developing host-directed therapies. In this review, we revisit recent findings on the immunometabolic modulation in response to infection and discuss how these metabolic pathways may be used as targets for new therapies to combat illnesses caused by respiratory RNA viruses.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Infecciones por Enterovirus , Metapneumovirus , Virus Sincitial Respiratorio Humano , Humanos , ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA