Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AAPS J ; 26(4): 70, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862871

RESUMEN

Synthetic cathinones represent one of the largest and most abused new psychoactive substance classes, and have been involved in numerous intoxications and fatalities worldwide. Methcathinone analogues like 3-methylmethcathinone (3-MMC), 3-chloromethcathinone (3-CMC), and 4-CMC currently constitute most of synthetic cathinone seizures in Europe. Documenting their consumption in clinical/forensic casework is therefore essential to tackle this trend. Targeting metabolite markers is a go-to to document consumption in analytical toxicology, and metabolite profiling is crucial to support investigations. We sought to identify 3-CMC, 4-CMC, and 4-bromomethcathinone (4-BMC) human metabolites. The substances were incubated with human hepatocytes; incubates were screened by liquid chromatography-high-resolution tandem mass spectrometry and data were mined with Compound Discoverer (Themo Scientific). 3-CMC-positive blood, urine, and oral fluid and 4-CMC-positive urine and saliva from clinical/forensic casework were analyzed. Analyses were supported by metabolite predictions with GLORYx freeware. Twelve, ten, and ten metabolites were identified for 3-CMC, 4-CMC, and 4-BMC, respectively, with similar transformations occurring for the three cathinones. Major reactions included ketoreduction and N-demethylation. Surprisingly, predominant metabolites were produced by combination of N-demethylation and ω-carboxylation (main metabolite in 3-CMC-positive urine), and combination of ß-ketoreduction, oxidative deamination, and O-glucuronidation (main metabolite in 4-CMC-positive urine). These latter metabolites were detected in negative-ionization mode only and their non-conjugated form was not detected after glucuronide hydrolysis; this metabolic pathway was never reported for any methcathinone analogue susceptible to undergo the same transformations. These results support the need for comprehensive screening strategies in metabolite identification studies, to avoid overlooking significant metabolites and major markers of consumption.


Asunto(s)
Hepatocitos , Humanos , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Espectrometría de Masas en Tándem/métodos , Propiofenonas/farmacocinética , Propiofenonas/metabolismo , Cromatografía Liquida/métodos , Detección de Abuso de Sustancias/métodos , Metanfetamina/análogos & derivados , Metanfetamina/metabolismo , Metanfetamina/administración & dosificación , Metanfetamina/farmacocinética , Psicotrópicos/farmacocinética , Psicotrópicos/metabolismo , Psicotrópicos/administración & dosificación , Metabolómica/métodos , Alcaloides/metabolismo , Drogas Ilícitas
2.
Arch Toxicol ; 98(7): 2101-2116, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38582802

RESUMEN

Following isotonitazene scheduling in 2019, the availability of alternative 2-benzylbenzimidazole opioids (nitazenes) on the global drug market increased, resulting in many fatalities worldwide. Nitazenes are potent µ-opioid receptor agonists with strong narcotic/analgesic effects, and their concentrations in biological matrices are low, making the detection of metabolite biomarkers of consumption crucial to document use in clinical and forensic settings. However, there is little to no data on the metabolism of the most recently available nitazenes, especially desnitro-analogues. The aim of the research was to assess isotonitazene, metonitazene, etodesnitazene, and metodesnitazene human metabolism and identify specific metabolite biomarkers of consumption. The four analogues were incubated with 10-donor-pooled human hepatocytes, and the incubates were analyzed by liquid chromatography-high-resolution tandem mass spectrometry and data mining with Compound Discoverer (Thermo Scientific); the analysis was supported by in silico metabolite predictions with GLORYx open-access software. Metabolites were identified in postmortem blood and/or urine samples from two metonitazene-positive and three etodesnitazene-positive cases following the same workflow, with and without glucuronide hydrolysis in urine, to confirm in vitro results. Twelve, nine, twenty-two, and ten metabolites were identified for isotonitazene, metonitazene, etodesnitazene, and metodesnitazene, respectively. The main transformations were N-deethylation at the N,N-diethylethanamine side chain, O-dealkylation, and further O-glucuronidation. In vitro and autopsy results were consistent, demonstrating the efficacy of the 10-donor-pooled human hepatocyte model to predict human metabolism. We suggest the parent and the corresponding O-dealkyl- and N-deethyl-O-dealkyl metabolites as biomarkers of exposure in urine after glucuronide hydrolysis, and the corresponding N-deethyl metabolite as additional biomarker in blood.


Asunto(s)
Analgésicos Opioides , Bencimidazoles , Hepatocitos , Humanos , Analgésicos Opioides/farmacocinética , Analgésicos Opioides/metabolismo , Analgésicos Opioides/orina , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Bencimidazoles/farmacocinética , Bencimidazoles/metabolismo , Espectrometría de Masas en Tándem , Masculino , Cromatografía Liquida , Adulto , Femenino , Biomarcadores/orina , Biomarcadores/sangre
3.
Clin Chem Lab Med ; 62(8): 1580-1590, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38311816

RESUMEN

OBJECTIVES: N-piperidinyl etonitazene (etonitazepipne) is a newly synthesized opioid related to the 2-benzylbenzimidazole analog class. Etonitazepipne has been formally notified and placed under intensive monitoring in Europe in January 2022. Nitazenes have high affinity at µ-opioid receptor (MOR). Etonitazepipne, specifically shows a EC50 of 2.49 nM, suggesting about 50 times higher potency combined with higher efficacy compared to morphine. Antinociceptive potency l ('hot plate test' with rats) was 192-fold greater than that of morphine. METHODS: Here we report on a post-mortem case involving etonitazepipne and its quantification using a standard addition method (SAM) through liquid chromatography tandem mass spectrometry (LC-MS/MS). In addition, characterization and identification of phase I human metabolites using in vitro assay based on pooled human liver microsomes (pHLM) was performed along with the analysis of authentic urine samples by means of high-performance liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). RESULTS: The concentration of etonitazepipne in post-mortem blood and urine was 8.3 and 11 ng/mL, respectively. SAM was validated by assessing the following parameters: intraday and interday repeatability, matrix effect and recovery rate in post-mortem blood. A total of 20 and 14 metabolites were identified after pHLM incubation and urine analysis, respectively. Most pronounced in vitro and in vivo transformations were O-deethylation, hydroxylation, ketone reduction, and combinations thereof. CONCLUSIONS: Considering small traces of the parent drug often found in real cases, the identification of metabolic biomarkers is crucial to identify exposure to this drug. O-deethylated, oxidated metabolites, and combination thereof are proposed as urinary biomarkers along with the parent compound.


Asunto(s)
Analgésicos Opioides , Microsomas Hepáticos , Espectrometría de Masas en Tándem , Humanos , Microsomas Hepáticos/metabolismo , Analgésicos Opioides/orina , Analgésicos Opioides/sangre , Analgésicos Opioides/metabolismo , Cromatografía Líquida de Alta Presión , Masculino
4.
J Pharm Biomed Anal ; 238: 115759, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-37866082

RESUMEN

IOX2 is a potent inhibitor of prolyl hydroxylase 2, a key enzyme in the regulation of hypoxia-inducible factor (HIF) and oxygen homeostasis. As such, it can be used to enhance athletic performance and is currently banned by the World Anti-Doping Agency (WADA). Detection of metabolites is critical to demonstrate drug use in doping. However, there is currently little data on IOX2 human metabolism. Our aim was to identify relevant biomarkers of IOX2 use in humans. For this purpose, IOX2 was incubated with 10-donor-pooled human hepatocytes for 3 h, incubates were analyzed by liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS), and LC-HRMS/MS data were screened with Compound Discoverer (Thermo Scientific) for a comprehensive identification of IOX2 metabolites. Additionally, IOX2 human metabolites were predicted with GLORYx open-access software (University of Hamburg, Germany) to assist in the LC-HRMS/MS analysis and data mining. Thirteen metabolites were identified, oxidation at the quinolinyl group, O-glucuronidation, and combinations being predominant biotransformations. The results were consistent with previous animal studies and a single case of oral microdose administration. We suggest hydroxyquinolinyl-IOX2 as major biomarker of IOX2 use in biological samples, glucuronide hydrolysis being critical to increase IOX2 and hydroxyquinolinyl-IOX2 detectability in urine.


Asunto(s)
Doping en los Deportes , Humanos , Cromatografía Liquida/métodos , Hepatocitos/metabolismo , Detección de Abuso de Sustancias/métodos , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA