Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1477, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368447

RESUMEN

Anaerobic methanotrophic (ANME) archaea are environmentally important, uncultivated microorganisms that oxidize the potent greenhouse gas methane. During methane oxidation, ANME archaea engage in extracellular electron transfer (EET) with other microbes, metal oxides, and electrodes through unclear mechanisms. Here, we cultivate ANME-2d archaea ('Ca. Methanoperedens') in bioelectrochemical systems and observe strong methane-dependent current (91-93% of total current) associated with high enrichment of 'Ca. Methanoperedens' on the anode (up to 82% of the community), as determined by metagenomics and transmission electron microscopy. Electrochemical and metatranscriptomic analyses suggest that the EET mechanism is similar at various electrode potentials, with the possible involvement of an uncharacterized short-range electron transport protein complex and OmcZ nanowires.


Asunto(s)
Archaea , Bacterias , Archaea/genética , Archaea/metabolismo , Transporte de Electrón , Bacterias/metabolismo , Anaerobiosis , Electrones , Oxidación-Reducción , Metano/metabolismo
2.
Nat Commun ; 14(1): 2974, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221165

RESUMEN

Hydrogen sulfide (H2S) and methane (CH4) are produced in anoxic environments through sulfate reduction and organic matter decomposition. Both gases diffuse upwards into oxic zones where aerobic methanotrophs mitigate CH4 emissions by oxidizing this potent greenhouse gas. Although methanotrophs in myriad environments encounter toxic H2S, it is virtually unknown how they are affected. Here, through extensive chemostat culturing we show that a single microorganism can oxidize CH4 and H2S simultaneously at equally high rates. By oxidizing H2S to elemental sulfur, the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV alleviates the inhibitory effects of H2S on methanotrophy. Strain SolV adapts to increasing H2S by expressing a sulfide-insensitive ba3-type terminal oxidase and grows as chemolithoautotroph using H2S as sole energy source. Genomic surveys revealed putative sulfide-oxidizing enzymes in numerous methanotrophs, suggesting that H2S oxidation is much more widespread in methanotrophs than previously assumed, enabling them to connect carbon and sulfur cycles in novel ways.


Asunto(s)
Extremófilos , Sulfuros , Oxidación-Reducción , Metano , Azufre
3.
Appl Environ Microbiol ; 88(19): e0071922, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36154165

RESUMEN

Nitropropionic acid (NPA) is a widely distributed naturally occurring nitroaliphatic toxin produced by leguminous plants and fungi. The Southern green shield bug feeds on leguminous plants and shows no symptoms of intoxication. Likewise, its gut-associated microorganisms are subjected to high levels of this toxic compound. In this study, we isolated a bacterium from this insect's gut system, classified as Pseudomonas sp. strain Nvir, that was highly resistant to NPA and was fully degrading it to inorganic nitrogen compounds and carbon dioxide. In order to understand the metabolic fate of NPA, we traced the fate of all atoms of the NPA molecule using isotope tracing experiments with [15N]NPA and [1-13C]NPA, in addition to experiments with uniformly 13C-labeled biomass that was used to follow the incorporation of 12C atoms from [U-12C]NPA into tricarboxylic acid cycle intermediates. With the help of genomics and transcriptomics, we uncovered the isolate's NPA degradation pathway, which involves a putative propionate-3-nitronate monooxygenase responsible for the first step of NPA degradation. The discovered protein shares only 32% sequence identity with previously described propionate-3-nitronate monooxygenases. Finally, we advocate that NPA-degrading bacteria might find application in biotechnology, and their unique enzymes might be used in biosynthesis, bioremediation, and in dealing with postharvest NPA contamination in economically important products. IMPORTANCE Plants have evolved sophisticated chemical defense mechanisms, such as the production of plant toxins in order to deter herbivores. One example of such a plant toxin is nitropropionic acid (NPA), which is produced by leguminous plants and also by certain fungi. In this project, we have isolated a bacterium from the intestinal tract of a pest insect, the Southern green shield bug, that is able to degrade NPA. Through a multiomics approach, we identified the respective metabolic pathway and determined the metabolic fate of all atoms of the NPA molecule. In addition, we provide a new genetic marker that can be used for genome mining toward NPA degradation. The discovery of degradation pathways of plant toxins by environmental bacteria opens new possibilities for pretreatment of contaminated food and feed sources and characterization of understudied enzymes allows their broad application in biotechnology.


Asunto(s)
Propionatos , Pseudomonas , Animales , Bacterias , Dióxido de Carbono/metabolismo , Marcadores Genéticos , Insectos , Oxigenasas de Función Mixta/metabolismo , Nitrocompuestos , Compuestos de Nitrógeno/metabolismo , Plantas Tóxicas , Propionatos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo
4.
Antonie Van Leeuwenhoek ; 115(10): 1229-1244, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35947314

RESUMEN

Archaea belonging to the phylum Bathyarchaeota are the predominant archaeal species in cold, anoxic marine sediments and additionally occur in a variety of habitats, both natural and man-made. Metagenomic and single-cell sequencing studies suggest that Bathyarchaeota may have a significant impact on the emissions of greenhouse gases into the atmosphere, either through direct production of methane or through the degradation of complex organic matter that can subsequently be converted into methane. This is especially relevant in permafrost regions where climate change leads to thawing of permafrost, making high amounts of stored carbon bioavailable. Here we present the analysis of nineteen draft genomes recovered from a sediment core metagenome of the Polar Fox Lagoon, a thermokarst lake located on the Bykovsky Peninsula in Siberia, Russia, which is connected to the brackish Tiksi Bay. We show that the Bathyarchaeota in this lake are predominantly peptide degraders, producing reduced ferredoxin from the fermentation of peptides, while degradation pathways for plant-derived polymers were found to be incomplete. Several genomes encoded the potential for acetogenesis through the Wood-Ljungdahl pathway, but methanogenesis was determined to be unlikely due to the lack of genes encoding the key enzyme in methanogenesis, methyl-CoM reductase. Many genomes lacked a clear pathway for recycling reduced ferredoxin. Hydrogen metabolism was also hardly found: one type 4e [NiFe] hydrogenase was annotated in a single MAG and no [FeFe] hydrogenases were detected. Little evidence was found for syntrophy through formate or direct interspecies electron transfer, leaving a significant gap in our understanding of the metabolism of these organisms.


Asunto(s)
Gases de Efecto Invernadero , Hidrogenasas , Archaea/genética , Archaea/metabolismo , Carbono/metabolismo , Fermentación , Ferredoxinas/metabolismo , Formiatos/metabolismo , Gases de Efecto Invernadero/metabolismo , Hidrógeno/metabolismo , Metano/metabolismo , Péptidos/metabolismo , Polímeros/metabolismo , Siberia
5.
Front Microbiol ; 13: 820989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495668

RESUMEN

Anaerobic methanotrophic (ANME) archaea have recently been reported to be capable of using insoluble extracellular electron acceptors via extracellular electron transfer (EET). In this study, we investigated EET by a microbial community dominated by "Candidatus Methanoperedens" archaea at the anode of a bioelectrochemical system (BES) poised at 0 V vs. standard hydrogen electrode (SHE), in this way measuring current as a direct proxy of EET by this community. After inoculation of the BES, the maximum current density was 274 mA m-2 (stable current up to 39 mA m-2). Concomitant conversion of 13CH4 into 13CO2 demonstrated that current production was methane-dependent, with 38% of the current attributed directly to methane supply. Based on the current production and methane uptake in a closed system, the Coulombic efficiency was about 17%. Polarization curves demonstrated that the current was limited by microbial activity at potentials above 0 V. The metatranscriptome of the inoculum was mined for the expression of c-type cytochromes potentially used for EET, which led to the identification of several multiheme c-type cytochrome-encoding genes among the most abundant transcripts in "Ca. Methanoperedens." Our study provides strong indications of EET in ANME archaea and describes a system in which ANME-mediated EET can be investigated under laboratory conditions, which provides new research opportunities for mechanistic studies and possibly the generation of axenic ANME cultures.

6.
Front Microbiol ; 13: 857442, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422776

RESUMEN

Methanotrophs aerobically oxidize methane to carbon dioxide to make a living and are known to degrade various other short chain carbon compounds as well. Volatile organic sulfur compounds such as methanethiol (CH3SH) are important intermediates in the sulfur cycle. Although volatile organic sulfur compounds co-occur with methane in various environments, little is known about how these compounds affect methanotrophy. The enzyme methanethiol oxidase catalyzing the oxidation of methanethiol has been known for decades, but only recently the mtoX gene encoding this enzyme was identified in a methylotrophic bacterium. The presence of a homologous gene in verrucomicrobial methanotrophs prompted us to examine how methanotrophs cope with methanethiol. Here, we show that the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV consumes methanethiol and produces H2S, which is concurrently oxidized. Consumption of methanethiol is required since methanethiol inhibits methane oxidation. Cells incubated with ∼15 µM methanethiol from the start clearly showed inhibition of growth. After depletion of methanethiol, growth resumed within 1 day. Genes encoding a putative methanethiol oxidase were found in a variety of methanotrophs. Therefore, we hypothesize that methanethiol degradation is a widespread detoxification mechanism in methanotrophs in a range of environments.

7.
Microbiol Resour Announc ; 9(50)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303660

RESUMEN

Methylobacterium brachiatum MBRA is an aerobic alphaproteobacterium isolated from the human skin on methanol-containing minimal medium. The genome was sequenced using Illumina and Nanopore technology, and the genome was assembled using Unicycler. M. brachiatum MBRA possesses two xoxF genes, one gene pair, mxaF and mxaI, and a complete serine pathway.

8.
mSystems ; 5(6)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144309

RESUMEN

Volcanic and geothermal environments are characterized by low pH, high temperatures, and gas emissions consisting of mainly CO2 and varied CH4, H2S, and H2 contents which allow the formation of chemolithoautotrophic microbial communities. To determine the link between the emitted gases and the microbial community composition, geochemical and metagenomic analysis were performed. Soil samples of the geothermic region Favara Grande (Pantelleria, Italy) were taken at various depths (1 to 50 cm). Analysis of the gas composition revealed that CH4 and H2 have the potential to serve as the driving forces for the microbial community. Our metagenomic analysis revealed a high relative abundance of Bacteria in the top layer (1 to 10 cm), but the relative abundance of Archaea increased with depth from 32% to 70%. In particular, a putative hydrogenotrophic methanogenic archaeon, related to Methanocella conradii, appeared to have a high relative abundance (63%) in deeper layers. A variety of [NiFe]-hydrogenase genes were detected, showing that H2 was an important electron donor for microaerobic microorganisms in the upper layers. Furthermore, the bacterial population included verrucomicrobial and proteobacterial methanotrophs, the former showing an up to 7.8 times higher relative abundance. Analysis of the metabolic potential of this microbial community showed a clear capacity to oxidize CH4 aerobically, as several genes for distinct particulate methane monooxygenases and lanthanide-dependent methanol dehydrogenases (XoxF-type) were retrieved. Analysis of the CO2 fixation pathways showed the presence of the Calvin-Benson-Bassham cycle, the Wood-Ljungdahl pathway, and the (reverse) tricarboxylic acid (TCA) cycle, the latter being the most represented carbon fixation pathway. This study indicates that the methane emissions in the Favara Grande might be a combination of geothermal activity and biological processes and further provides insights into the diversity of the microbial population thriving on CH4 and H2 IMPORTANCE The Favara Grande nature reserve on the volcanic island of Pantelleria (Italy) is known for its geothermal gas emissions and high soil temperatures. These volcanic soil ecosystems represent "hot spots" of greenhouse gas emissions. The unique community might be shaped by the hostile conditions in the ecosystem, and it is involved in the cycling of elements such as carbon, hydrogen, sulfur, and nitrogen. Our metagenome study revealed that most of the microorganisms in this extreme environment are only distantly related to cultivated bacteria. The results obtained profoundly increased the understanding of these natural hot spots of greenhouse gas production/degradation and will help to enrich and isolate the microbial key players. After isolation, it will become possible to unravel the molecular mechanisms by which they adapt to extreme (thermo/acidophilic) conditions, and this may lead to new green enzymatic catalysts and technologies for industry.

9.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 5): 199-208, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32356521

RESUMEN

The enzyme 4-hydroxy-tetrahydrodipicolinate synthase (DapA) is involved in the production of lysine and precursor molecules for peptidoglycan synthesis. In a multistep reaction, DapA converts pyruvate and L-aspartate-4-semialdehyde to 4-hydroxy-2,3,4,5-tetrahydrodipicolinic acid. In many organisms, lysine binds allosterically to DapA, causing negative feedback, thus making the enzyme an important regulatory component of the pathway. Here, the 2.1 Šresolution crystal structure of DapA from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV is reported. The enzyme crystallized as a contaminant of a protein preparation from native biomass. Genome analysis reveals that M. fumariolicum SolV utilizes the recently discovered aminotransferase pathway for lysine biosynthesis. Phylogenetic analyses of the genes involved in this pathway shed new light on the distribution of this pathway across the three domains of life.


Asunto(s)
Proteínas Bacterianas/química , Hidroliasas/química , Transaminasas/genética , Verrucomicrobia/química , Sitio Alostérico , Dominio Catalítico/genética , Contención de Riesgos Biológicos , Genoma Bacteriano , Hidroliasas/aislamiento & purificación , Lisina/biosíntesis , Lisina/genética , Filogenia , Dominios Proteicos/genética , Multimerización de Proteína , Transaminasas/química , Verrucomicrobia/enzimología , Difracción de Rayos X
10.
Front Microbiol ; 10: 2352, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681216

RESUMEN

Emissions of the strong greenhouse gas methane (CH4) to the atmosphere are mitigated by methanotrophic microorganisms. Methanotrophs found in extremely acidic geothermal systems belong to the phylum Verrucomicrobia. Thermophilic verrucomicrobial methanotrophs from the genus Methylacidiphilum can grow autotrophically on hydrogen gas (H2), but it is unknown whether this also holds for their mesophilic counterparts from the genus Methylacidimicrobium. To determine this, we examined H2 consumption and CO2 fixation by the mesophilic verrucomicrobial methanotroph Methylacidimicrobium tartarophylax 4AC. We found that strain 4AC grows autotrophically on H2 with a maximum growth rate of 0.0048 h-1 and a yield of 2.1 g dry weight⋅mol H2 -1, which is about 12 and 41% compared to the growth rate and yield on methane, respectively. The genome of strain 4AC only encodes for an oxygen-sensitive group 1b [NiFe] hydrogenase and H2 is respired only when oxygen concentrations are below 40 µM. Phylogenetic analysis and genomic comparison of methanotrophs revealed diverse [NiFe] hydrogenases, presumably with varying oxygen sensitivity and affinity for H2, which could drive niche differentiation. Our results show that both thermophilic and mesophilic verrucomicrobial methanotrophs can grow as autotrophs on H2 as a sole energy source. Our results suggest that verrucomicrobial methanotrophs are particularly well-equipped to thrive in hostile volcanic ecosystems, since they can consume H2 as additional energy source.

11.
Front Microbiol ; 10: 160, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30837958

RESUMEN

Soda lakes are saline alkaline lakes characterized by high concentrations of sodium carbonate/bicarbonate which lead to a stable elevated pH (>9), and moderate to extremely high salinity. Despite this combination of extreme conditions, biodiversity in soda lakes is high, and the presence of diverse microbial communities provides a driving force for highly active biogeochemical cycles. The sulfur cycle is one of the most important of these and bacterial sulfur oxidation is dominated by members of the obligately chemolithoautotrophic genus Thioalkalivibrio. Currently, 10 species have been described in this genus, but over one hundred isolates have been obtained from soda lake samples. The genomes of 75 strains were sequenced and annotated previously, and used in this study to provide a comprehensive picture of the diversity and distribution of genes related to dissimilatory sulfur metabolism in Thioalkalivibrio. Initially, all annotated genes in 75 Thioalkalivibrio genomes were placed in ortholog groups and filtered by bi-directional best BLAST analysis. Investigation of the ortholog groups containing genes related to sulfur oxidation showed that flavocytochrome c (fcc), the truncated sox system, and sulfite:quinone oxidoreductase (soe) are present in all strains, whereas dissimilatory sulfite reductase (dsr; which catalyzes the oxidation of elemental sulfur) was found in only six strains. The heterodisulfide reductase system (hdr), which is proposed to oxidize sulfur to sulfite in strains lacking both dsr and soxCD, was detected in 73 genomes. Hierarchical clustering of strains based on sulfur gene repertoire correlated closely with previous phylogenomic analysis. The phylogenetic analysis of several sulfur oxidation genes showed a complex evolutionary history. All in all, this study presents a comprehensive investigation of sulfur metabolism-related genes in cultivated Thioalkalivibrio strains and provides several avenues for future research.

12.
mSystems ; 2(6)2017.
Artículo en Inglés | MEDLINE | ID: mdl-29285524

RESUMEN

Thiocyanate (N=C-S-) is a moderately toxic, inorganic sulfur compound. It occurs naturally as a by-product of the degradation of glucosinolate-containing plants and is produced industrially in a number of mining processes. Currently, two pathways for the primary degradation of thiocyanate in bacteria are recognized, the carbonyl sulfide pathway and the cyanate pathway, of which only the former has been fully characterized. Use of the cyanate pathway has been shown in only 10 strains of Thioalkalivibrio, a genus of obligately haloalkaliphilic sulfur-oxidizing Gammaproteobacteria found in soda lakes. So far, only the key enzyme in this reaction, thiocyanate dehydrogenase (TcDH), has been purified and studied. To gain a better understanding of the other genes involved in the cyanate pathway, we conducted a transcriptomics experiment comparing gene expression during the growth of Thioalkalivibrio thiocyanoxidans ARh 2T with thiosulfate with that during its growth with thiocyanate. Triplicate cultures were grown in continuous substrate-limited mode, followed by transcriptome sequencing (RNA-Seq) of the total mRNA. Differential expression analysis showed that a cluster of genes surrounding the gene for TcDH were strongly upregulated during growth with thiocyanate. This cluster includes genes for putative copper uptake systems (copCD, ABC-type transporters), a putative electron acceptor (fccAB), and a two-component regulatory system (histidine kinase and a σ54-responsive Fis family transcriptional regulator). Additionally, we observed the increased expression of RuBisCO and some carboxysome shell genes involved in inorganic carbon fixation, as well as of aprAB, genes involved in sulfite oxidation through the reverse sulfidogenesis pathway. IMPORTANCE Thiocyanate is a moderately toxic and chemically stable sulfur compound that is produced by both natural and industrial processes. Despite its significance as a pollutant, knowledge of the microbial degradation of thiocyanate is very limited. Therefore, investigation of thiocyanate oxidation in haloalkaliphiles such as the genus Thioalkalivibrio may lead to improved biotechnological applications in wastewater remediation.

13.
Front Microbiol ; 8: 254, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28293216

RESUMEN

Thiocyanate is a C1 compound containing carbon, nitrogen, and sulfur. It is a (by)product in a number of natural and industrial processes. Because thiocyanate is toxic to many organisms, including humans, its removal from industrial waste streams is an important problem. Although a number of bacteria can use thiocyanate as a nitrogen source, only a few can use it as an electron donor. There are two distinct pathways to use thiocyanate: (i) the "carbonyl sulfide pathway," which has been extensively studied, and (ii) the "cyanate pathway," whose key enzyme, thiocyanate dehydrogenase, was recently purified and studied. Three species of Thioalkalivibrio, a group of haloalkaliphilic sulfur-oxidizing bacteria isolated from soda lakes, have been described as thiocyanate oxidizers: (i) Thioalkalivibrio paradoxus ("cyanate pathway"), (ii) Thioalkalivibrio thiocyanoxidans ("cyanate pathway") and (iii) Thioalkalivibrio thiocyanodenitrificans ("carbonyl sulfide pathway"). In this study we provide a comparative genome analysis of these described thiocyanate oxidizers, with genomes ranging in size from 2.5 to 3.8 million base pairs. While focusing on thiocyanate degradation, we also analyzed the differences in sulfur, carbon, and nitrogen metabolism. We found that the thiocyanate dehydrogenase gene is present in 10 different Thioalkalivibrio strains, in two distinct genomic contexts/genotypes. The first genotype is defined by having genes for flavocytochrome c sulfide dehydrogenase upstream from the thiocyanate dehydrogenase operon (present in two strains including the type strain of Tv. paradoxus), whereas in the second genotype these genes are located downstream, together with two additional genes of unknown function (present in eight strains, including the type strains of Tv. thiocyanoxidans). Additionally, we found differences in the presence/absence of genes for various sulfur oxidation pathways, such as sulfide:quinone oxidoreductase, dissimilatory sulfite reductase, and sulfite dehydrogenase. One strain (Tv. thiocyanodenitrificans) lacks genes encoding a carbon concentrating mechanism and none of the investigated genomes were shown to contain known bicarbonate transporters. This study gives insight into the genomic variation of thiocyanate oxidizing bacteria and may lead to improvements in the application of these organisms in the bioremediation of industrial waste streams.

14.
Stand Genomic Sci ; 11: 28, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014417

RESUMEN

"Candidatus Achromatium palustre" was recently described as the first marine representative of the Achromatium spp. in the Thiotrichaceae - a sister lineage to the Chromatiaceae in the Gammaproteobacteria. Achromatium spp. belong to the group of large sulfur bacteria as they can grow to nearly 100 µm in size and store elemental sulfur (S(0)) intracellularly. As a unique feature, Achromatium spp. can accumulate colloidal calcite (CaCO3) inclusions in great amounts. Currently, both process and function of calcite accumulation in bacteria is unknown, and all Achromatium spp. are uncultured. Recently, three single-cell draft genomes of Achromatium spp. from a brackish mineral spring were published, and here we present the first draft genome of a single "Candidatus Achromatium palustre" cell collected in the sediments of the Sippewissett Salt Marsh, Cape Cod, MA. Our draft dataset consists of 3.6 Mbp, has a G + C content of 38.1 % and is nearly complete (83 %). The next closest relative to the Achromatium spp. genomes is Thiorhodovibrio sp. 907 of the family Chromatiaceae, containing phototrophic sulfide-oxidizing bacteria.

15.
Stand Genomic Sci ; 10: 105, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26594306

RESUMEN

Thioalkalivibrio paradoxus strain ARh 1(T) is a chemolithoautotrophic, non-motile, Gram-negative bacterium belonging to the Gammaproteobacteria that was isolated from samples of haloalkaline soda lakes. It derives energy from the oxidation of reduced sulfur compounds and is notable for its ability to grow on thiocyanate as its sole source of electrons, sulfur and nitrogen. The full genome consists of 3,756,729 bp and comprises 3,500 protein-coding and 57 RNA-coding genes. This organism was sequenced as part of the community science program at the DOE Joint Genome Institute.

16.
Stand Genomic Sci ; 10: 84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26512309

RESUMEN

Thioalkalivibrio thiocyanodenitrificans strain ARhD 1(T) is a motile, Gram-negative bacterium isolated from soda lakes that belongs to the Gammaproteobacteria. It derives energy for growth and carbon fixation from the oxidation of sulfur compounds, most notably thiocyanate, and so is a chemolithoautotroph. It is capable of complete denitrification under anaerobic conditions. The draft genome sequence consists of 3,746,647 bp in 3 scaffolds, containing 3558 protein-coding and 121 RNA genes. T. thiocyanodenitrificans ARhD 1(T) was sequenced as part of the DOE Joint Genome Institute Community Science Program.

17.
Stand Genomic Sci ; 10: 85, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26512310

RESUMEN

Thioalkalivibrio thiocyanoxidans strain ARh 2(T) is a sulfur-oxidizing bacterium isolated from haloalkaline soda lakes. It is a motile, Gram-negative member of the Gammaproteobacteria. Remarkable properties include the ability to grow on thiocyanate as the sole energy, sulfur and nitrogen source, and the capability of growth at salinities of up to 4.3 M total Na(+). This draft genome sequence consists of 61 scaffolds comprising 2,765,337 bp, and contains 2616 protein-coding and 61 RNA-coding genes. This organism was sequenced as part of the Community Science Program of the DOE Joint Genome Institute.

18.
ISME J ; 9(11): 2503-14, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25909974

RESUMEN

Large sulfur bacteria of the genus Achromatium are exceptional among Bacteria and Archaea as they can accumulate high amounts of internal calcite. Although known for more than 100 years, they remain uncultured, and only freshwater populations have been studied so far. Here we investigate a marine population of calcite-accumulating bacteria that is primarily found at the sediment surface of tide pools in a salt marsh, where high sulfide concentrations meet oversaturated oxygen concentrations during the day. Dynamic sulfur cycling by phototrophic sulfide-oxidizing and heterotrophic sulfate-reducing bacteria co-occurring in these sediments creates a highly sulfidic environment that we propose induces behavioral differences in the Achromatium population compared with reported migration patterns in a low-sulfide environment. Fluctuating intracellular calcium/sulfur ratios at different depths and times of day indicate a biochemical reaction of the salt marsh Achromatium to diurnal changes in sedimentary redox conditions. We correlate this calcite dynamic with new evidence regarding its formation/mobilization and suggest general implications as well as a possible biological function of calcite accumulation in large bacteria in the sediment environment that is governed by gradients. Finally, we propose a new taxonomic classification of the salt marsh Achromatium based on their adaptation to a significantly different habitat than their freshwater relatives, as indicated by their differential behavior as well as phylogenetic distance on 16S ribosomal RNA gene level. In future studies, whole-genome characterization and additional ecophysiological factors could further support the distinctive position of salt marsh Achromatium.


Asunto(s)
Carbonato de Calcio/química , Agua Dulce/microbiología , Bacterias Aerobias Gramnegativas/genética , Bacterias Reductoras del Azufre/genética , Microbiología del Agua , Humedales , Compuestos de Calcio , Gammaproteobacteria/genética , Massachusetts , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Cloruro de Sodio , Sulfuros , Azufre/química
19.
Extremophiles ; 18(5): 791-809, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25156418

RESUMEN

Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art 'meta-omic' techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments.


Asunto(s)
Ciclo del Carbono , Lagos/microbiología , Microbiota , Tolerancia a la Sal , Lagos/química , Metano/química , Metano/metabolismo , Ciclo del Nitrógeno , Azufre/química , Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...