Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Opt Express ; 28(25): 37734-37742, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33379602

RESUMEN

We use low-resolution optical lithography joined with solid state dewetting of crystalline, ultra-thin silicon on insulator (c-UT-SOI) to form monocrystalline, atomically smooth, silicon-based Mie resonators in well-controlled large periodic arrays. The dewetted islands have a typical size in the 100 nm range, about one order of magnitude smaller than the etching resolution. Exploiting a 2 µm thick SiO2 layer separating the islands and the underlying bulk silicon wafer, we combine the resonant modes of the antennas with the etalon effect. This approach sets the resonance spectral position and improves the structural colorization and the contrast between scattering maxima and minima of individual resonant antennas. Our results demonstrate that templated dewetting enables the formation of defect-free, faceted islands that are much smaller than the nominal etching resolution and that an appropriate engineering of the substrate improves their scattering properties. These results are relevant to applications in spectral filtering, structural color and beam steering with all-dielectric photonic devices.

2.
Nanoscale ; 11(13): 6145-6152, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30874280

RESUMEN

Highly oriented pyrolytic graphite (HOPG) is an inert substrate with a structural honeycomb lattice, well suited for the growth of a two-dimensional (2D) silicene layer. It was reported that when Si atoms are deposited on the HOPG surface at room temperature, they arrange into two configurations: silicene nanosheets and three-dimensional clusters. In this work we demonstrate, by using scanning tunneling microscopy (STM) and Raman spectroscopy, that a third configuration stabilizes in the form of Si 2D nanosheets intercalated below the first top layer of carbon atoms. The Raman spectra reveal a structure located at 538 cm-1 which we ascribe to the presence of sp2 Si hybridization. Moreover, the silicon deposition induces several modifications in the graphite D and G Raman modes, which we interpret as experimental evidence of the intercalation of the silicene nanosheets. The Si atom intercalation at room temperature takes place at the HOPG step edges and it detaches only the outermost graphite layer inducing a strong tensile strain mainly concentrated on the edges of the silicene nanosheets. Theoretical calculations of the structure and energetic viability of the silicene nanosheets and of the strain distribution on the outermost graphite layer and its influence on the Raman resonances support the STM and Raman observations.

3.
Nanotechnology ; 26(50): 505602, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26579983

RESUMEN

Synthesizing Au0.8Si0.2 nanocatalysts that are homogeneous in size and have controlled position is becoming a challenging and crucial prequisite for the fabrication of ordered semiconductor nanowires. In this study, Au0.8Si0.2 nanocatalysts are synthesized via dewetting of Au layers on Si(111) during thermal annealing in an ultra-high vacuum. In the first part of the paper, the mechanism of homogeneous dewetting is analyzed as a function of the Au-deposited thickness (h Au). We distinguish three different dewetting regimes: (I) for a low thickness ([Formula: see text]), a submonolyer coverage of Au is stabilized and there is no dewetting. (II) For an intermediate thickness ([Formula: see text]), there is both dewetting and Au0.8Si0.2 phase formation. The size and density of the Au0.8Si0.2 clusters are directly related to h Au. When cooling down to room temperature, the clusters decompose and reject the Si at the Au/Si substrate interface. (III) For a large thickness ([Formula: see text]), only dewetting takes place, without forming AuSi clusters. In this regime, the dewetting is kinetically controlled by the self-diffusion of Au (activation energy ∼0.43 eV) without evidence of an Si-alloying effect. As a practical consequence, when relying solely on the homogeneous dewetting of Au/Si(111) to form the Au0.8Si0.2 catalysts (without a supply of Si atoms from vapor), regime II should be used to obtain good size and density control. In the second part of the paper, a process for ordering the catalysts using focused ion beam-(FIB) assisted dewetting (heterogeneous dewetting) is developed. We show that no matter what the FIB milling conditions and the Au nominal thickness are, dewetting is promoted by ion beam irradiation and is accompanied by the formation of Au0.8Si0.2 droplets. The droplets preferentially form on the patterned areas, while in similar annealing conditions, they do not form on the unpatterned areas. This behavior is attributed to the larger Au-Si interdiffusion in the patterned areas, which results from the Si amorphization induced by the FIB. A systematic analysis of the position of the nanodroplets shows their preferential nucleation inside the patterns, while thicker platelets of almost pure Au are observed between the patterns. The evolutions of the size homogeneity and the occupancy rate of the patterns are quantified as a function of the FIB dose and annealing temperature. Nice arrays of perfectly ordered AuSi catalysts are obtained after optimizing the FIB and dewetting conditions.

4.
Nanotechnology ; 25(33): 335303, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25074329

RESUMEN

Selective growth and self-organization of silicon-germanium (SiGe) nanowires (NWs) on focused ion beam (FIB) patterned Si(111) substrates is reported. In its first step, the process involves the selective synthesis of Au catalysts in SiO2-free areas; its second step involves the preferential nucleation and growth of SiGe NWs on the catalysts. The selective synthesis process is based on a simple, room-temperature reduction of gold salts (Au³âºCl4⁻) in aqueous solution, which provides well-organized Au catalysts. By optimizing the reduction process, we are able to generate a bidimensional regular array of Au catalysts with self-limited sizes positioned in SiO2-free windows opened in a SiO2/Si(111) substrate by FIB patterning. Such Au catalysts subsequently serve as preferential nucleation and growth sites of well-organized NWs. Furthermore, these NWs with tunable position and size exhibit the relevant features and bright luminescence that would find several applications in optoelectronic nanodevices.

5.
Nanoscale ; 6(13): 7469-73, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24881677

RESUMEN

We report diffusion induced germanium nanowire growth and its dependence on the Ge evaporation flux. The wires show a growth rate (dL/dt) in agreement with the previously reported models, but detection of anomalies in the grown wires may indicate the prevalence of the direct Ge impinging effect on large diameter wires. Additionally, we demonstrate that change in deposition flux could directly affect the diffusion length of the Ge adatoms on the wire sidewalls. This in turn modifies the geometry of the grown wires by introducing a lateral growth starting from the base of the wire. A detailed understanding of the deposition flux effect on the growth and geometry of wires will result in improved knowledge of physical properties of wires.

6.
Beilstein J Nanotechnol ; 5: 2498-504, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25671145

RESUMEN

We report on the optical properties of SiGe nanowires (NWs) grown by molecular beam epitaxy (MBE) in ordered arrays on SiO2/Si(111) substrates. The production method employs Au catalysts with self-limited sizes deposited in SiO2-free sites opened-up in the substrate by focused ion beam patterning for the preferential nucleation and growth of these well-organized NWs. The NWs thus produced have a diameter of 200 nm, a length of 200 nm, and a Ge concentration x = 0.15. Their photoluminescence (PL) spectra were measured at low temperatures (from 6 to 25 K) with excitation at 405 and 458 nm. There are four major features in the energy range of interest (980-1120 meV) at energies of 1040.7, 1082.8, 1092.5, and 1098.5 meV, which are assigned to the NW-transverse optic (TO) Si-Si mode, NW-transverse acoustic (TA), Si-substrate-TO and NW-no-phonon (NP) lines, respectively. From these results the NW TA and TO phonon energies are found to be 15.7 and 57.8 meV, respectively, which agree very well with the values expected for bulk Si1- x Ge x with x = 0.15, while the measured NW NP energy of 1099 meV would indicate a bulk-like Ge concentration of x = 0.14. Both of these concentrations values, as determined from PL, are in agreement with the target value. The NWs are too large in diameter for a quantum confinement induced energy shift in the band gap. Nevertheless, NW PL is readily observed, indicating that efficient carrier recombination is occurring within the NWs.

7.
Nanotechnology ; 24(18): 185704, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23579463

RESUMEN

Local strain and Ge content distribution in self-assembled, in-plane Ge/Si nanowires grown by combining molecular beam epitaxy and the metal-catalyst assisted-growth method were investigated by tip-enhanced Raman scattering. We show that this technique is essential to study variations of physical properties of single wires at the nanoscale, a task which cannot be achieved with conventional micro-Raman scattering. As two major findings, we report that (i) the Ge distribution in the (001) crystallographic direction is inhomogeneous, displaying a gradient with a higher Ge content close to the top surface, and (ii) in contrast, the (uncapped) wires exhibit essentially the same small residual compressive strain everywhere along the wire.

8.
J Phys Condens Matter ; 24(14): 142203, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22410688

RESUMEN

Densely packed epitaxial Mn-doped Si(0.3)Ge(0.7) nanodots self-assembled on Si(100) have been obtained. Their structural properties were studied using reflection high-energy electron diffraction, energy dispersive x-ray diffraction, atomic force microscopy, extended x-ray absorption fine structure measurements and high-resolution transmission electron microscopy. Mn(5)Ge(1)Si(2) crystallites embedded in Si(0.3)Ge(0.7) were found. They exhibit a ferromagnetic behaviour with a Curie temperature of about 225 K.


Asunto(s)
Germanio/química , Manganeso/química , Nanoestructuras/química , Silicio/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Nanotecnología , Propiedades de Superficie , Temperatura , Difracción de Rayos X
9.
J Nanosci Nanotechnol ; 11(10): 9208-14, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22400325

RESUMEN

The mechanism driving Germanium islands nucleation and self-assembly is an important effect for opto-electronic applications, still not fully understood. We demonstrate that the new transmission electron microscopy phase imaging method provides insights on the distribution of strain and composition fields in and around the islands on rather large areas. The method consists of retrieving the phase from a focus series of plane view images. The phase image is representative of morphology, composition and strain. The results show that whatever the islands size and shape is, a maximum compressive strain is obtained at the apex of the islands compensated by a maximum tensile strain in the substrate close to the islands perimeter. The maximum compressive strain is associated to a larger Ge concentration. The distribution of tensile strain varies with the shape of the islands: for square base pyramidal "hut" islands, a maximum tensile strain is obtained at the four corners of the pyramid base and for "dome" islands, the tensile strain is less pronounced and affects almost the whole island perimeter. These results are consistent with the higher strain relaxation level of "dome" islands in comparison to those of "hut" islands.

10.
Nanotechnology ; 21(6): 065706, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20057032

RESUMEN

A combined conductive atomic force microscope (C-AFM)/scanning electron microscope (SEM) has been used to study the electric transport and retention mechanisms through Ge nanocrystals (NCs). The NCs were formed by a two-step dewetting/nucleation process on a silicon oxide layer grown on n-doped 001 silicon substrate. Without preliminary e-beam irradiation, electric images are obtained only with bias voltages larger than 8 V. This is due to the barrier height introduced by the presence of the native oxide on NCs and of the oxide layer on which the NCs are grown. After acquisition of an e-beam-induced current image, electric images (e-beam off) can be easily obtained at low bias voltages because of the trap creation in the oxide layer. We show that the critical threshold voltage to detect a current through the NCs decreases with NCs size. The band diagram of the contact in the presence of a p-doped diamond coated tip shows that the conduction mechanism is dominated by holes. At last we show a good memory effect with charge/discharge in the NCs resulting in a long retention time.

11.
J Nanosci Nanotechnol ; 7(1): 316-21, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17455497

RESUMEN

This work was devoted to the development of a Ge quantum dot memory structure of a MOSFET type with laterally ordered Ge quantum dots within the gate dielectric stack. Lateral ordering of the Ge dots was achieved by the combination of the following technological steps: (a) use of a focused ion beam (FIB) to create ordered two-dimensional arrays of regular holes on a field oxide on the silicon substrate, (b) chemical cleaning and restoring of the Si surface in the holes, (c) further oxidation to transfer the pattern from the field oxide to the silicon substrate, (d) removal of the field oxide and thermal re-oxidation of the sample in order to create a tunneling oxide of homogeneous thickness on the patterned silicon surface, and (e) self-assembly of the two-dimensional arrays of Ge dots on the patterned tunneling oxide. The charging properties of the obtained memory structure were characterized by electrical measurements. Charging of the Ge quantum dot layer by electrons injected from the substrate resulted in a large shift in the capacitance-voltage curves of the MOS structure. Charges were stored in deep traps in the charging layer, and consequently the erasing process was difficult, resulting in a limited memory window. The advantages of controlled positioning of the quantum dots in the charging layer will be discussed.


Asunto(s)
Equipos de Almacenamiento de Computador , Germanio/química , Nanopartículas/química , Puntos Cuánticos , Silicio/química , Cristalización , Electroquímica/métodos , Electrones , Diseño de Equipo , Almacenamiento y Recuperación de la Información , Microscopía Electrónica de Transmisión , Modelos Estadísticos , Nanotecnología/métodos , Semiconductores , Temperatura
12.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...