Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4196, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760357

RESUMEN

Precious metals are core assets for the development of modern technologies in various fields. Their scarcity poses the question of their cost, life cycle and reuse. Recently, an emerging catalysis employing contact-electrification (CE) at water-solid interfaces to drive redox reaction, called contact-electro-catalysis (CEC), has been used to develop metal free mechano-catalytic methods to efficiently degrade refractory organic compounds, produce hydrogen peroxide, or leach metals from spent Li-Ion batteries. Here, we show ultrasonic CEC can successfully drive the reduction of Ag(ac), Rh3+, [PtCl4]2-, Ag+, Hg2+, Pd2+, [AuCl4]-, and Ir3+, in both anaerobic and aerobic conditions. The effect of oxygen on the reaction is studied by electron paramagnetic resonance (EPR) spectroscopy and ab-initio simulation. Combining measurements of charge transfers during water-solid CE, EPR spectroscopy and gold extraction experiments help show the link between CE and CEC. What's more, this method based on water-solid CE is capable of extracting gold from synthetic solutions with concentrations ranging from as low as 0.196 ppm up to 196 ppm, reaching in 3 h extraction capacities ranging from 0.756 to 722.5 mg g-1 in 3 h. Finally, we showed CEC is employed to design a metal-free, selective, and recyclable catalytic gold extraction methods from e-waste aqueous leachates.

2.
Adv Mater ; : e2313288, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537247

RESUMEN

Recently, perovskite photodetectors (PDs) are risen to prominence due to substantial research interest. Beyond merely tweaking the composition of materials, a cutting-edge advancement lies in leveraging the innate piezoelectric polarization properties of perovskites themselves. Here, the investigation shows utilizing Ti3C2Tx, a typical MXene, as an intermediate layer for significantly boosting the piezoelectric property of MAPbI3 thin films. This improvement is primarily attributed to the enhanced polarization of the methylammonium (MA+) groups within MAPbI3, induced by the OH groups present in Ti3C2Tx. A flexible PD based on the MAPbI3/MXene heterostructure is then fabricated. The new device is sensitive to a wide range of wavelengths, displays greatly enhanced performance owing to the piezo-phototronic coupling. Moreover, the device is endowed with a greatly reduced response time, down to millisecond level, through the pyro-phototronic effect. The characterization shows applying a -1.2% compressive strain on the PD leads to a remarkable 102% increase in the common photocurrent, and a 76% increase in the pyro-phototronic current. The present work reveals how the emerging piezo-phototronic and pyro-phototronic effects can be employed to design high-performance flexible perovskite PDs.

3.
Small ; 20(2): e2305303, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658494

RESUMEN

Tribovoltaic nanogenerators (TVNG) represent a fantastic opportunity for developing low-frequency energy harvesting and self-powered sensing, by exploiting their real-time direct-current (DC) output. Here, a thorough study of the effect of relative humidity (RH) on a TVNG consisting of 4H-SiC (n-type) and metallic copper foil (SM-TVNG) is presented. The SM-TVNG shows a remarkable sensitivity to RH and an abnormal RH dependence. When RH increases from ambient humidity up to 80%, an increasing electrical output is observed. However, when RH rises from 80% to 98%, the signal output not only decreases, but its direction reverses as it crosses 90% RH. This behavior differs greatly from that of a Si-based TVNG, whose output constantly increases with RH. The behavior of the SM-TVNG might result from the competition between the built-in electric field induced by metal-semiconductor contact and a strong triboelectric electric field induced by solid-liquid triboelectrification under high RH. The authors also demonstrated that both SM-TVNG and Si-based TVNG can work effectively as-is even fully submerged in deionized water. This mechanism can affect other devices and be applied to design self-powered sensors working under high RH or underwater.

4.
Adv Mater ; 35(46): e2304387, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37487242

RESUMEN

The recent intensification of the study of contact-electrification at water-solid interfaces and its role in physicochemical processes lead to the realization that electron transfers during water-solid contact-electrification can drive chemical reactions. This mechanism, named contact-electro-catalysis (CEC), allows chemically inert fluorinated polymers to act like single electrode electrochemical systems. This study shows hydrogen peroxide (H2 O2 ) is generated from air and deionized water, by ultrasound driven CEC, using fluorinated ethylene propylene (FEP) as the catalyst. For a mass ratio of catalyst to solution of 1:10000, at 20 °C, the kinetic rate of H2 O2 evolution reaches 58.87 mmol L-1  gcat -1  h-1 . Electron paramagnetic resonance (EPR) shows electrons are emitted in the solution by the charged FEP, during ultrasonication. EPR and isotope labelling experiments show H2 O2 is formed from hydroxyl radicals (HO• ) or two superoxide radicals (O2 •- ) generated by CEC. Finally, it is traditionally believed such radicals migrate in the solution by Brownian diffusion prior to reactions. However, ab-initio molecular dynamic calculations reveal the radicals can react by exchanging protons and electrons through the hydrogen bonds network of water, i.e., owing to the Grotthuss mechanism. This mechanism can be relevant to other systems, artificial or natural, generating H2 O2 from air and water.

5.
Nanoscale ; 15(13): 6243-6251, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36896686

RESUMEN

Contact-electro-catalysis (CEC) has been recently proposed for the effective degradation of methyl orange, but the reactivity of catalysts in the CEC process needs further investigation. Here, we have used dielectric films, such as fluorinated ethylene propylene (FEP), modified by inductively coupled plasma (ICP) etching with argon, to replace the previously employed micro-powder due to their potential scalability, facile recycling process, and possible lower generation of secondary pollution. It has been found that ICP creates cone-like micro/nano structures on the surface, and thus changes the contact angle and specific surface area. The value of the contact angle varies non-linearly with etching time and attains a maximum after 60 seconds of etching. Concurrently, an increased electron transfer is observed, as well as an enhanced degradation efficiency, thus suggesting a special role of the surface structure. Finally, KPFM measurements show a lower electron affinity at the summit of the nanocones. This observation suggests that the structures are endowed with higher charge transfer ability. In addition, this film-based CEC has been observed in several polymer materials, such as PET, PTFE, and PVC. We view this work as a stepping stone to develop CEC into scalable applications, based on film technologies.

6.
Nat Commun ; 13(1): 130, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013271

RESUMEN

Mechanochemistry has been studied for some time, but research on the reactivity of charges exchanged by contact-electrification (CE) during mechanical stimulation remains scarce. Here, we demonstrate that electrons transferred during the CE between pristine dielectric powders and water can be utilized to directly catalyze reactions without the use of conventional catalysts. Specifically, frequent CE at Fluorinated Ethylene Propylene (FEP) - water interface induces electron-exchanges, thus forming reactive oxygen species for the degradation of an aqueous methyl orange solution. Contact-electro-catalysis, by conjunction of CE, mechanochemistry and catalysis, has been proposed as a general mechanism, which has been demonstrated to be effective for various dielectric materials, such as Teflon, Nylon-6,6 and rubber. This original catalytic principle not only expands the range of catalytic materials, but also enables us to envisage catalytic processes through mechano-induced contact-electrification.

7.
Adv Mater ; 33(24): e2101891, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33963783

RESUMEN

Touch sensing is among the most important sensing capabilities of a human, and the same is true for smart robotics. Current research on tactile sensors is mainly concentrated on electronic skin (e-skin), but e-skin is prone to be easily dirtied, damaged, and disturbed after repeated usage, which greatly limits its practical applications in robotics. Here, by mimicking the way that animals explore the environment using hair-based sensors, a bendable biomimetic whisker mechanoreceptor (BWMR) is designed for robotic tactile sensing. Owing to the advantages of triboelectric nanogenerator technology, the BWMR can convert external mechanical stimuli into electrical signals without a power supply, which is conducive to its widespread applications in robots. Because of the leverage effect of the whisker, the BWMR can distinguish an exciting force of 1.129 µN by amplifying external weak signals, which can be further improved by increasing the whisker length. Real-time sensing is demonstrated using a BWMR, exhibiting its potential for robotic tactile systems.


Asunto(s)
Biomimética , Robótica , Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...