Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Strahlenther Onkol ; 200(3): 195-201, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37626226

RESUMEN

PURPOSE: In ultrahypofractionated radiation concepts, managing of intrafractional motion is mandatory because tighter margins are used and random errors resulting from prostate movement are not averaged out over a large number of fractions. Noninvasive live monitoring of prostate movement is a desirable asset for LINAC-based prostate stereotactic body radiation therapy (SBRT). METHODS: We prospectively analyzed a novel live tracking device (RayPilot HypoCath™; Micropos Medical AB, Gothenburg, Sweden) where a transmitter is noninvasively positioned in the prostatic urethra using a Foley catheter in 12 patients undergoing ultrahypofractionated intensity-modulated radiation therapy (IMRT) of the prostate. Gold fiducials (Innovative Technology Völp, Innsbruck, Austria) were implanted to allow comparison of accuracy and positional stability of the HypoCath system and its ability to be used as a standalone IGRT method. Spatial stability of the transponder was assessed by analyzing transmitter movement in relation to gold markers (GM) in superimposed kV image pairs. Inter- and intrafractional prostate movement and the impact of its correction were analyzed. RESULTS: A total of 64 fractions were analyzed. The average resulting deviation vector compared to the GM-based position was 1.2 mm and 0.7 mm for inter- and intrafractional motion, respectively. The mean intrafractional displacement vector of the prostate was 1.9 mm. Table readjustment due to exceeding the threshold of 3 mm was required in 18.8% of fractions. Repositioning reduced the time spent outside the 3­mm margin from 7.9% to 3.8% of beam-on time. However, for individual patients, the time spent outside the 3­mm margin was reduced from to 49% to 19%. CONCLUSION: the HypoCath system allows highly accurate and robust intrafractional motion monitoring. In conjunction with cone beam CT (CBCT) for initial patient setup, it could be used as a standalone image-guided radiation therapy (IGRT) system.


Asunto(s)
Neoplasias de la Próstata , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Masculino , Humanos , Radioterapia Guiada por Imagen/métodos , Oro , Neoplasias de la Próstata/radioterapia , Movimiento (Física) , Próstata/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/métodos , Marcadores Fiduciales , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
2.
Radiat Oncol ; 18(1): 186, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950314

RESUMEN

Intraoperative radiation therapy (IORT) is a radiation technique applying a single fraction with a high dose during surgery. We report the first abdomino-pelvic application of an image-guided intraoperative electron radiation therapy with intraoperative real time dose calculation based on the individual intraoperative patient anatomy. A patient suffering from locoregionally recurrent rectal cancer after treatment with neoadjuvant re-chemoradiation was chosen for this approach. After surgical removal of the recurrence, an adequate IORT applicator was placed as usual. A novel mobile imaging device (ImagingRing, MedPhoton) was positioned around the patient covering the region to be treated with the IORT-applicator in place. It allowed the acquisition of three-dimensional intraoperative cone-beam computed tomography images suitable for dose calculation using an automated scaling (heuristic object and head scatter as well as hardening corrections) of Hounsfield units. After image acquisition confirmed the correct applicator position, the images were transferred to our treatment planning system for intraoperative dose calculation. Treatment could be accomplished using the calculated dose distribution. We herein describe the details of the procedure including necessary adjustments in the typically used IORT equipment and work flow. We further discuss the pros and cons of this new approach generally overcoming a decade long limitation of IORT procedures as well as future perspectives regarding IORT treatments.


Asunto(s)
Radioterapia Guiada por Imagen , Neoplasias del Recto , Humanos , Electrones , Radioterapia Guiada por Imagen/métodos , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/radioterapia , Neoplasias del Recto/cirugía , Terapia Combinada , Tomografía Computarizada de Haz Cónico , Periodo Intraoperatorio , Cuidados Intraoperatorios
3.
Diagnostics (Basel) ; 12(5)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35626183

RESUMEN

Introduction: Curatively intended chemo-radio-immunotherapy for non-small cell lung cancer (NSCLC) stage III may lead to post-therapeutic pulmonary function (PF) impairment. We hypothesized that the decrease in global PF corresponds to the increase in tissue density in follow-up CTs. Hence, the study aim was to correlate the dynamics in radiographic alterations to carbon monoxide diffusing capacity (DLCO) and FEV1, which may contribute to a better understanding of radiation-induced lung disease. Methods: Eighty-five patients with NSCLC III were included. All of them received two cycles of platinum-based induction chemotherapy followed by high dose radiation. Thereafter, durvalumab was administered for one year in 63/85 patients (74%). Pulmonary function tests (PFTs) were performed three months and six months after completion of radiotherapy (RT) and compared to baseline. At the same time points, patients underwent diagnostic CT (dCT). These dCTs were matched to the planning CT (pCT) using RayStation® Model Based Segmentation and deformable image registration. Differential volumes defined by specific isodoses were generated to correlate them with the PFTs. Results: In general, significant correlations between PFTs and differential volumes were found in the mid-dose range, especially for the volume of the lungs receiving between 65% and 45% of the dose prescribed (V65−45%) and DLCO (p<0.01). This volume range predicted DLCO after RT (p-value 0.03) as well. In multivariate analysis, DLCO (p-value 0.040) and FEV1 (p-value 0.014) predicted pneumonitis. Conclusions: The current analysis revealed a strong relation between the dynamics of DLCO and CT morphology changes in the mid-dose range, which convincingly indicates the importance of routinely used PFTs in the context of a curative treatment approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...