Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(8): 6438-6444, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363716

RESUMEN

Lead halide perovskite nanocrystals, such as CsPbBr3, exhibit efficient photoluminescence (PL) up-conversion, also referred to as anti-Stokes photoluminescence (ASPL). This is a phenomenon where irradiating nanocrystals up to 100 meV below gap results in higher energy band edge emission. Most surprising is that ASPL efficiencies approach unity and involve single-photon interactions with multiple phonons. This is unexpected given the statistically disfavored nature of multiple-phonon absorption. Here, we report and rationalize near-unity anti-Stokes photoluminescence efficiencies in CsPbBr3 nanocrystals and attribute them to resonant multiple-phonon absorption by polarons. The theory explains paradoxically large efficiencies for intrinsically disfavored, multiple-phonon-assisted ASPL in nanocrystals. Moreover, the developed microscopic mechanism has immediate and important implications for applications of ASPL toward condensed phase optical refrigeration.

2.
Phys Rev Lett ; 124(20): 207004, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32501091

RESUMEN

Superconductivity with T_{c}≈15 K was recently found in doped NdNiO_{2}. The Ni^{1+}O_{2} layers are expected to be Mott insulators, so hole doping should produce Ni^{2+} with S=1, incompatible with robust superconductivity. We show that the NiO_{2} layers fall inside a critical region where the large pd hybridization favors a singlet ^{1}A_{1} hole-doped state like in CuO_{2}. However, we find that the superexchange is about one order smaller than in cuprates, thus a magnon "glue" is very unlikely and another mechanism needs to be found.

3.
Sci Adv ; 4(2): eaar1998, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29507885

RESUMEN

Many puzzling properties of high-critical temperature (Tc) superconducting (HTSC) copper oxides have deep roots in the nature of the antinodal quasiparticles, the elementary excitations with wave vector parallel to the Cu-O bonds. These electronic states are most affected by the onset of antiferromagnetic correlations and charge instabilities, and they host the maximum of the anisotropic superconducting gap and pseudogap. We use time-resolved extreme-ultraviolet photoemission with proper photon energy (18 eV) and time resolution (50 fs) to disclose the ultrafast dynamics of the antinodal states in a prototypical HTSC cuprate. After photoinducing a nonthermal charge redistribution within the Cu and O orbitals, we reveal a dramatic momentum-space differentiation of the transient electron dynamics. Whereas the nodal quasiparticle distribution is heated up as in a conventional metal, new quasiparticle states transiently emerge at the antinodes, similarly to what is expected for a photoexcited Mott insulator, where the frozen charges can be released by an impulsive excitation. This transient antinodal metallicity is mapped into the dynamics of the O-2p bands, thus directly demonstrating the intertwining between the low- and high-energy scales that is typical of correlated materials. Our results suggest that the correlation-driven freezing of the electrons moving along the Cu-O bonds, analogous to the Mott localization mechanism, constitutes the starting point for any model of high-Tc superconductivity and other exotic phases of HTSC cuprates.

4.
Phys Rev Lett ; 121(24): 247001, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30608767

RESUMEN

It is widely accepted that phonon-mediated high-temperature superconductivity is impossible at ambient pressure, because of the very large effective masses of polarons or bipolarons at strong electron-phonon coupling. Here we challenge this belief by showing that strongly bound yet very light bipolarons appear for strong Peierls coupling. These bipolarons also exhibit many other unconventional properties; e.g., at strong coupling there are two low-energy bipolaron bands that are stable against strong Coulomb repulsion. Using numerical simulations and analytical arguments, we show that these properties result from the specific form of the phonon-mediated interaction, which is of "pair hopping" instead of regular density-density type. This unusual effective interaction is bound to have nontrivial consequences for the superconducting state expected to arise at finite carrier concentrations and should favor a large critical temperature.

5.
Phys Rev Lett ; 121(25): 255702, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30608785

RESUMEN

We present a machine-learning method for predicting sharp transitions in a Hamiltonian phase diagram by extrapolating the properties of quantum systems. The method is based on Gaussian process regression with a combination of kernels chosen through an iterative procedure maximizing the predicting power of the kernels. The method is capable of extrapolating across the transition lines. The calculations within a given phase can be used to predict not only the closest sharp transition but also a transition removed from the available data by a separate phase. This makes the present method particularly valuable for searching phase transitions in the parts of the parameter space that cannot be probed experimentally or theoretically.

6.
Nat Commun ; 8(1): 2267, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273715

RESUMEN

There is major interest, in condensed matter physics, in understanding the role of topology: remarkable progress has been made in classifying topological properties of non-interacting electrons, and on understanding the interplay between topology and electron-electron interactions. We extend such studies to interactions with the lattice, and predict non-trivial topological effects in infinitely long-lived polaron bands. Specifically, for a two-dimensional many-band model with realistic electron-phonon coupling, we verify that sharp level crossings are possible for polaron eigenstates, and prove that they are responsible for a novel type of sharp transition in the ground state of the polaron that can occur at a fixed momentum. Furthermore, they result in the appearance of Dirac cones stabilized by electron-phonon coupling. Thus, electron-phonon coupling opens an avenue to create and control Dirac and Weyl semimetals.

7.
Phys Rev Lett ; 116(8): 087002, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26967437

RESUMEN

We argue that tetragonal CuO (T-CuO) has the potential to finally settle long-standing modeling issues for cuprate physics. We compare the one-hole quasiparticle (qp) dispersion of T-CuO to that of cuprates, in the framework of the strongly correlated (U_{dd}→∞) limit of the three-band Emery model. Unlike in CuO_{2}, magnetic frustration in T-CuO breaks the C_{4} rotational symmetry and leads to strong deviations from the Zhang-Rice singlet picture in parts of the reciprocal space. Our results are consistent with angle-resolved photoemission spectroscopy data but in sharp contradiction to those of a one-band model previously suggested for them. These differences identify T-CuO as an ideal material to test a variety of scenarios proposed for explaining cuprate phenomenology.

8.
Phys Rev Lett ; 112(10): 106404, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24679313

RESUMEN

We study a model for the metal-insulator (M-I) transition in the rare-earth-element nickelates RNiO3, based upon a negative charge transfer energy and coupling to a rocksaltlike lattice distortion of the NiO6 octahedra. Using exact diagonalization and the Hartree-Fock approximation we demonstrate that electrons couple strongly to these distortions. For small distortions the system is metallic, with a ground state of predominantly d8L character, where L_ denotes a ligand hole. For sufficiently large distortions (δdNi-O∼0.05-0.10 Å), however, a gap opens at the Fermi energy as the system enters a periodically distorted state alternating along the three crystallographic axes, with (d8L_2)S=0(d8)S=1 character, where S is the total spin. Thus the M-I transition may be viewed as being driven by an internal volume "collapse" where the NiO6 octahedra with two ligand holes shrink around their central Ni, while the remaining octahedra expand accordingly, resulting in the (1/2, 1/2, 1/2) superstructure observed in x-ray diffraction in the insulating phase. This insulating state is an example of charge ordering achieved without any actual movement of the charge.

9.
Phys Rev Lett ; 111(3): 037205, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23909358

RESUMEN

We study two Kitaev-Heisenberg t-J-like models on a honeycomb lattice, focusing on the zigzag magnetic phase of Na(2)IrO(3), and investigate hole motion by exact diagonalization and variational methods. The spectral functions are quite distinct from those of cuprates and are dominated by large incoherent spectral weight at high energy, almost independent of the microscopic parameters-a universal and generic feature for zigzag magnetic correlations. We explain why quasiparticles at low energy are strongly suppressed in the photoemission spectra and determine an analog of a pseudogap. We point out that the qualitative features of the predominantly incoherent spectra obtained within the two different models for the zigzag phase are similar, and they have a remarkable similarity to recently reported angular resolved photoemission spectra for Na(2)IrO(3).

10.
Phys Rev Lett ; 110(22): 223002, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23767718

RESUMEN

We determine the phase diagram of a polaron model with mixed breathing-mode and Su-Schrieffer-Heeger couplings and show that it has two sharp transitions, in contrast to pure models which exhibit one (for Su-Schrieffer-Heeger coupling) or no (for breathing-mode coupling) transition. We then show that ultracold molecules trapped in optical lattices can be used as a quantum simulator to study precisely this mixed Hamiltonian, and that the relative contributions of the two couplings can be tuned with external electric fields. The parameters of current experiments place them in the region where one of the transitions occurs. We also propose a scheme to measure the polaron dispersion using stimulated Raman spectroscopy.

11.
Phys Rev Lett ; 108(21): 216403, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-23003287

RESUMEN

We propose two new methods to calculate exactly the spectrum of two spin-1/2 charge carriers moving in a ferromagnetic background, at zero temperature. We find that if the spins are located on a different sublattice than that on which the fermions move, magnon-mediated effective interactions are very strong and can bind the fermions into low-energy bipolarons with triplet character. This never happens in models where spins and charge carriers share the same lattice, whether they are in the same band or in different bands. This proves that effective one-lattice models do not describe correctly the low-energy part of the two-carrier spectrum of a two-sublattice model, even though they may describe the low-energy single-carrier spectrum appropriately.

12.
Phys Rev Lett ; 107(7): 076403, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21902409

RESUMEN

The momentum average approximation is used to derive a new kind of nonperturbational analytical expression for the optical conductivity (OC) of a Holstein polaron at zero temperature. This provides insight into the shape of the OC, by linking it to the structure of the polaron's phonon cloud. Our method works in any dimension, properly enforces selection rules, can be systematically improved, and also generalizes to momentum-dependent couplings. Its accuracy is demonstrated by a comparison with the first detailed set of three-dimensional numerical OC results, obtained using the approximation-free diagrammatic Monte Carlo method.

13.
Phys Rev Lett ; 106(3): 036401, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21405284

RESUMEN

We derive and investigate numerically a minimal yet detailed spin-polaron model that describes lightly doped CuO2 layers. The low-energy physics of a hole is studied by total-spin-resolved exact diagonalization on clusters of up to 32 CuO2 unit cells, revealing features missed by previous studies. In particular, spin-polaron states with total spin 3/2 are the lowest eigenstates in some regions of the Brillouin zone. In these regions, and also at other points, the quasiparticle weight is identically zero indicating orthogonal states to those represented in the one electron Green's function. This highlights the importance of the proper treatment of spin fluctuations in the many-body background.

14.
Phys Rev Lett ; 107(24): 246403, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22243015

RESUMEN

We show how few-particle Green's functions can be calculated efficiently for models with nearest-neighbor hopping, for infinite lattices in any dimension. As an example, for one-dimensional spinless fermions with both nearest-neighbor and second-nearest-neighbor interactions, we investigate the ground states for up to 5 fermions. This allows us not only to find the stability region of various bound complexes, but also to infer the phase diagram at small but finite concentrations.

15.
Phys Rev Lett ; 103(17): 176402, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19905774

RESUMEN

We study the effects of a nearby surface on the spectral weight of a Holstein polaron, using the inhomogeneous momentum average approximation which is accurate over the entire range of electron-phonon (e-ph) coupling strengths. The broken translational symmetry is taken into account exactly. We find that the e-ph coupling gives rise to a large additional surface potential, with strong retardation effects, which may bind surface states even when they are not normally expected. The surface, therefore, has a significant effect and bulk properties are recovered only very far away from it. These results demonstrate that interpretation in terms of bulk quantities of spectroscopic data sensitive only to a few surface layers is not always appropriate.

16.
Phys Rev Lett ; 102(18): 186403, 2009 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-19518893

RESUMEN

We study the effects of the Rashba spin-orbit coupling on polaron formation, using a suitable generalization of the momentum average approximation. While previous work on a parabolic band model found that spin-orbit coupling increases the effective mass, we show that the opposite holds for a tight-binding model, unless both the spin-orbit and the electron-phonon couplings are weak. It is thus possible to lower the effective mass of the polaron by increasing the spin-orbit coupling. We also show that when the spin-orbit coupling is large as compared to the phonon energy, the polaron retains only one of the spin-polarized bands in its coherent spectrum. This has major implications for the propagation of spin-polarized currents in such materials, and thus for spintronic applications.

17.
Phys Rev Lett ; 101(9): 097004, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18851642

RESUMEN

When a tunneling barrier between two superconductors is formed by a normal material that would be a superconductor in the absence of phase fluctuations, the resulting Josephson effect can undergo an enormous enhancement. We establish this novel proximity effect by a general argument as well as a numerical simulation and argue that it may underlie recent experimental observations of the giant proximity effect between two cuprate superconductors separated by a barrier made of the same material rendered normal by severe underdoping.

18.
Phys Rev Lett ; 100(25): 256405, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18643685

RESUMEN

We study the effects of the rippling of a graphene sheet on quasiparticle dispersion. This is achieved using a generalization to the honeycomb lattice of the momentum average approximation, which is accurate for all coupling strengths and at all energies. We show that even though the position of the Dirac points may move and the Fermi speed can be renormalized significantly, quasiparticles with very long lifetimes survive near the Dirac points even for very strong couplings.

19.
Phys Rev Lett ; 97(3): 036402, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16907521

RESUMEN

We present a new, highly efficient yet accurate approximation for the Green's functions of dressed particles, using the Holstein polaron as an example. Instead of summing a subclass of self-energy diagrams (e.g., the noncrossed ones, in the self-consistent Born approximation), we sum all the diagrams, but with each diagram averaged over its free propagators' momenta. The resulting Green's function satisfies exactly the first six spectral weight sum rules. All higher sum rules are satisfied with great accuracy, becoming asymptotically exact for coupling both much larger and much smaller than the free particle bandwidth. Possible generalizations to other models are also discussed.

20.
Nature ; 435(7038): 71-5, 2005 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-15875016

RESUMEN

The continuous need for miniaturization and increase in device speed drives the electronics industry to explore new avenues of information processing. One possibility is to use electron spin to store, manipulate and carry information. All such 'spintronics' applications are faced with formidable challenges in finding fast and efficient ways to create, transport, detect, control and manipulate spin textures and currents. Here we show how most of these operations can be performed in a relatively simple manner in a hybrid system consisting of a superconducting film and a paramagnetic diluted magnetic semiconductor (DMS) quantum well. Our proposal is based on the observation that the inhomogeneous magnetic fields of the superconducting film create local spin and charge textures in the DMS quantum well, leading to a variety of effects such as Bloch oscillations and an unusual quantum Hall effect. We exploit recent progress in manipulating magnetic flux bundles (vortices) in superconductors and show how these can create, manipulate and control the spin textures in DMSs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...