Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 346: 140635, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939930

RESUMEN

The development of non-expensive and efficient technologies for the elimination of Glyphosate (GLP) in water is of great interest for society today. Here we explore novel electrocatalytic effects to boost the anodic oxidation of GLP on Pt-doped (3-13met%) SnO2-Sb electrodes. The study reveals the formation of well disperse Pt nanophases in SnO2-Sb that electrocatalyze GLP elimination. Cyclic voltammetry and in-situ spectroelectrochemical FTIR analysis evidence carboxylate-mediated Pt-GLP electrocatalytic interactions to promote oxidation and mineralization of this herbicide. Interestingly, under electrolytic conditions Pt effects are proposed to synergistically cooperate with hydroxyl radicals in GLP oxidation. Furthermore, the formation of by-products has been followed by different techniques, and the studied electrodes are compared to commercial Si/BDD and Ti/Pt anodes and tested for a real GLP commercial product. Results show that, although BDD is the most effective anode, the SnO2-Sb electrode with a 13 met% Pt can mineralize GLP with lower energy consumption.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Titanio , Oxidación-Reducción , Electrodos , Compuestos de Estaño , Glifosato
2.
Materials (Basel) ; 12(16)2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394840

RESUMEN

Electrochemical polymerization is known to be a suitable route to obtain conducting polymer-carbon composites uniformly covering the carbon support. In this work, we report the application of a filter-press electrochemical cell to polymerize polyaniline (PAni) on the surface of large-sized activated carbon cloth (ACC) by simple galvanostatic electropolymerization of an aniline-containing H2SO4 electrolyte. Flexible composites with different PAni loadings were synthesized by controlling the treatment time and characterized by means of Scanning Electron microscopy (SEM), X-Ray Photoelectron Spectroscopy (XPS), physical adsorption of gases, thermogravimetric analysis (TGA), cyclic voltammetry and direct current (DC) conductivity measurements. PAni grows first as a thin film mostly deposited inside ACC micro- and mesoporosity. At prolonged electropolymerization time, the amount of deposited PAni rises sharply to form a brittle and porous, thick coating of nanofibrous or nanowire-shaped structures. Composites with low-loading PAni thin films show enhanced specific capacitance, lower sheet resistance and faster adsorption kinetics of Acid Red 27. Instead, thick nanofibrous coatings have a deleterious effect, which is attributed to a dramatic decrease in the specific surface area caused by strong pore blockage and to the occurrence of contact electrical resistance. Our results demonstrate that mass-production restrictions often claimed for electropolymerization can be easily overcome.

3.
ACS Omega ; 2(11): 7739-7745, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31457330

RESUMEN

Tailoring the morphological, chemical, and physical properties of vanadium oxides (VOx) is crucial to optimize their performance in current and future applications. The present contribution proposes a new route to obtain VOx nanofibers with different V4+/V5+ ratios and crystallinity. The method involves the exclusive electrospinning of water-free NH4VO3-saturated solutions including a reductant. Subsequent air-annealing under suitable conditions yields vanadium oxide fibers of 20-90 nm diameter and 10-50 m2/g surface area. The presence of the reductant gives rise to VOx nanofibers with a considerable proportion of V4+. Then, the right choice of the calcination heating rate and temperature permits to modify the V4+/V5+ ratio as well as the crystalline phase and crystallite size of the fibers. With the proposed methodology, long-range continuous single-phase orthorhombic V2O5 and monoclinic V3O7 nanofibers are obtained.

4.
ACS Appl Mater Interfaces ; 6(24): 22778-89, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25453898

RESUMEN

Different Pt- and Ru-doped Ti/SnO2-Sb electrodes were synthesized by thermal decomposition. The effect of the gradual substitution of Sb by Ru in the nominal composition on the physicochemical and electrochemical properties were evaluated. The electrochemical stability of the electrodes was estimated from accelerated tests at 0.5 A cm(-2) in 1 M NaOH. Both as-synthesized and deactivated electrodes were thoroughly characterized by scanning electron microscopy (SEM), energy-dispersive X-ray microanalysis (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction analysis (XRD). The incorporation of a small amount (about 3 at. %) of both Pt and Ru into the SnO2-Sb electrodes produced a 400-times increase in their service life in alkaline medium, with no remarkable change in the electrocatalysis of the oxygen evolution reaction (OER). It is concluded that the deactivation of the electrodes is promoted by alkaline dissolution of metal species and coating detachment at high potentials. The introduction of Pt has a coating compacting effect, and Ru(IV), at low amounts until 9.75 at. %, replaces the Sn(IV) cations in the rutile-like SnO2 structure to form a solid solution that strongly increases the stability of the electrodes. The observed Ru segregation and decreased stability for larger Ru contents (x > 9.75 at. %), together with the selective dissolution of Ru after deactivation, suggest that the formation of a homogeneous (RuδSn1-δ)O2 single-phase is crucial for the stabilization of these electrodes.

5.
Nanoscale ; 6(18): 10574-83, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-24969702

RESUMEN

The precise design of Si-based materials at the nanometer scale is a quite complex issue but of utmost importance for their present and potential applications. This paper reports the first attempt to address the electrochemical reduction of SiO2 at the nanometer scale. SiO2 nanoparticles are first covered with a uniform carbon layer with controlled thickness at an accuracy of a few nanometers, by pressure-pulsed chemical vapor deposition. With appropriate thickness, the carbon layer plays significant roles as a current path and also as a physical barrier against Si-crystal growth, and the SiO2 nanoparticles are successfully converted into extremely small Si nanocrystals (<20 nm) inside the shell-like carbon layer whose morphology is derived from the original SiO2 nanoparticles. Thus, the proposed electroreduction method offers a new synthesis strategy of Si-C nanocomposites utilizing the morphology of SiO2 nanomaterials, which are well known for a wide variety of defined and regular nanostructures. Owing to the volume difference of SiO2 and the corresponding Si, nanopores are generated around the Si nanocrystals. It has been demonstrated that the nanopores around the Si nanocrystals are effective to improve cycle performance of Si as a negative electrode for lithium-ion batteries. The present method is in principle applicable to various SiO2 nanomaterials, and thus, offers production of a variety of Si-C composites whose carbon nanostructures can be defined by their parent SiO2 nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA