Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 724, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872197

RESUMEN

We introduce Version 2 of our widely used 1-km Köppen-Geiger climate classification maps for historical and future climate conditions. The historical maps (encompassing 1901-1930, 1931-1960, 1961-1990, and 1991-2020) are based on high-resolution, observation-based climatologies, while the future maps (encompassing 2041-2070 and 2071-2099) are based on downscaled and bias-corrected climate projections for seven shared socio-economic pathways (SSPs). We evaluated 67 climate models from the Coupled Model Intercomparison Project phase 6 (CMIP6) and kept a subset of 42 with the most plausible CO2-induced warming rates. We estimate that from 1901-1930 to 1991-2020, approximately 5% of the global land surface (excluding Antarctica) transitioned to a different major Köppen-Geiger class. Furthermore, we project that from 1991-2020 to 2071-2099, 5% of the land surface will transition to a different major class under the low-emissions SSP1-2.6 scenario, 8% under the middle-of-the-road SSP2-4.5 scenario, and 13% under the high-emissions SSP5-8.5 scenario. The Köppen-Geiger maps, along with associated confidence estimates, underlying monthly air temperature and precipitation data, and sensitivity metrics for the CMIP6 models, can be accessed at www.gloh2o.org/koppen .

2.
Nature ; 592(7852): 65-69, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33790442

RESUMEN

Year-to-year changes in carbon uptake by terrestrial ecosystems have an essential role in determining atmospheric carbon dioxide concentrations1. It remains uncertain to what extent temperature and water availability can explain these variations at the global scale2-5. Here we use factorial climate model simulations6 and show that variability in soil moisture drives 90 per cent of the inter-annual variability in global land carbon uptake, mainly through its impact on photosynthesis. We find that most of this ecosystem response occurs indirectly as soil moisture-atmosphere feedback amplifies temperature and humidity anomalies and enhances the direct effects of soil water stress. The strength of this feedback mechanism explains why coupled climate models indicate that soil moisture has a dominant role4, which is not readily apparent from land surface model simulations and observational analyses2,5. These findings highlight the need to account for feedback between soil and atmospheric dryness when estimating the response of the carbon cycle to climatic change globally5,7, as well as when conducting field-scale investigations of the response of the ecosystem to droughts8,9. Our results show that most of the global variability in modelled land carbon uptake is driven by temperature and vapour pressure deficit effects that are controlled by soil moisture.


Asunto(s)
Atmósfera/química , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Ecosistema , Retroalimentación , Suelo/química , Agua/análisis , Dióxido de Carbono/análisis , Humedad , Fotosíntesis , Temperatura , Agua/metabolismo
3.
Sci Data ; 7(1): 274, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807783

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Proc Natl Acad Sci U S A ; 116(38): 18848-18853, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31481606

RESUMEN

Compound extremes such as cooccurring soil drought (low soil moisture) and atmospheric aridity (high vapor pressure deficit) can be disastrous for natural and societal systems. Soil drought and atmospheric aridity are 2 main physiological stressors driving widespread vegetation mortality and reduced terrestrial carbon uptake. Here, we empirically demonstrate that strong negative coupling between soil moisture and vapor pressure deficit occurs globally, indicating high probability of cooccurring soil drought and atmospheric aridity. Using the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we further show that concurrent soil drought and atmospheric aridity are greatly exacerbated by land-atmosphere feedbacks. The feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. In addition, the soil moisture-precipitation feedback acts to amplify precipitation and soil moisture deficits in most regions. CMIP5 models further show that the frequency of concurrent soil drought and atmospheric aridity enhanced by land-atmosphere feedbacks is projected to increase in the 21st century. Importantly, land-atmosphere feedbacks will greatly increase the intensity of both soil drought and atmospheric aridity beyond that expected from changes in mean climate alone.


Asunto(s)
Atmósfera/química , Suelo/química , Tiempo (Meteorología) , Cambio Climático , Sequías , Retroalimentación , Mapeo Geográfico , Humedad , Modelos Teóricos
5.
Nature ; 565(7740): 476-479, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30675043

RESUMEN

Although the terrestrial biosphere absorbs about 25 per cent of anthropogenic carbon dioxide (CO2) emissions, the rate of land carbon uptake remains highly uncertain, leading to uncertainties in climate projections1,2. Understanding the factors that limit or drive land carbon storage is therefore important for improving climate predictions. One potential limiting factor for land carbon uptake is soil moisture, which can reduce gross primary production through ecosystem water stress3,4, cause vegetation mortality5 and further exacerbate climate extremes due to land-atmosphere feedbacks6. Previous work has explored the impact of soil-moisture availability on past carbon-flux variability3,7,8. However, the influence of soil-moisture variability and trends on the long-term carbon sink and the mechanisms responsible for associated carbon losses remain uncertain. Here we use the data output from four Earth system models9 from a series of experiments to analyse the responses of terrestrial net biome productivity to soil-moisture changes, and find that soil-moisture variability and trends induce large CO2 fluxes (about two to three gigatons of carbon per year; comparable with the land carbon sink itself1) throughout the twenty-first century. Subseasonal and interannual soil-moisture variability generate CO2 as a result of the nonlinear response of photosynthesis and net ecosystem exchange to soil-water availability and of the increased temperature and vapour pressure deficit caused by land-atmosphere interactions. Soil-moisture variability reduces the present land carbon sink, and its increase and drying trends in several regions are expected to reduce it further. Our results emphasize that the capacity of continents to act as a future carbon sink critically depends on the nonlinear response of carbon fluxes to soil moisture and on land-atmosphere interactions. This suggests that the increasing trend in carbon uptake rate may not be sustained past the middle of the century and could result in accelerated atmospheric CO2 growth.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Ecosistema , Humedad , Suelo/química , Agua/análisis , Atmósfera/química , Procesos Autotróficos , Secuestro de Carbono , Respiración de la Célula , Mapeo Geográfico , Fotosíntesis , Plantas/metabolismo , Estaciones del Año
6.
Sci Data ; 5: 180214, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30375988

RESUMEN

We present new global maps of the Köppen-Geiger climate classification at an unprecedented 1-km resolution for the present-day (1980-2016) and for projected future conditions (2071-2100) under climate change. The present-day map is derived from an ensemble of four high-resolution, topographically-corrected climatic maps. The future map is derived from an ensemble of 32 climate model projections (scenario RCP8.5), by superimposing the projected climate change anomaly on the baseline high-resolution climatic maps. For both time periods we calculate confidence levels from the ensemble spread, providing valuable indications of the reliability of the classifications. The new maps exhibit a higher classification accuracy and substantially more detail than previous maps, particularly in regions with sharp spatial or elevation gradients. We anticipate the new maps will be useful for numerous applications, including species and vegetation distribution modeling. The new maps including the associated confidence maps are freely available via www.gloh2o.org/koppen.

7.
Nat Commun ; 8(1): 989, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057878

RESUMEN

Land surface processes modulate the severity of heat waves, droughts, and other extreme events. However, models show contrasting effects of land surface changes on extreme temperatures. Here, we use an earth system model from the Geophysical Fluid Dynamics Laboratory to investigate regional impacts of land use and land cover change on combined extremes of temperature and humidity, namely aridity and moist enthalpy, quantities central to human physiological experience of near-surface climate. The model's near-surface temperature response to deforestation is consistent with recent observations, and conversion of mid-latitude natural forests to cropland and pastures is accompanied by an increase in the occurrence of hot-dry summers from once-in-a-decade to every 2-3 years. In the tropics, long time-scale oceanic variability precludes determination of how much of a small, but significant, increase in moist enthalpy throughout the year stems from the model's novel representation of historical patterns of wood harvesting, shifting cultivation, and regrowth of secondary vegetation and how much is forced by internal variability within the tropical oceans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...