Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 354: 120270, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377748

RESUMEN

Solutions-driven research is a transdisciplinary approach that incorporates diverse forms of expertise to identify solutions to stakeholder-identified environmental problems. This qualitative evaluation of early solutions-driven research projects provides transferable recommendations to improve researcher and stakeholder experiences and outcomes in transdisciplinary environmental research projects. Researchers with the U.S. Environmental Protection Agency (EPA) Office of Research and Development recently piloted a solutions-driven research approach in two parallel projects; one addressing nutrient management related to coastal waters and another studying wildland fire smoke impacts on indoor air quality. Studying the experiences of those involved with these pilots can enhance the integration of researcher and experiential expertise, improving solutions-driven research outcomes. Data collection included semi-structured interviews with 17 EPA researchers and 12 other stakeholders and reflective case narratives from the authors. We used conventional content analysis to qualitatively analyze perspectives on implementing innovative engagement and research approaches in a solutions-driven process. Findings that reflect common perspectives include the importance of continuous engagement, the challenges of differing timelines and priorities for researchers and stakeholders, and the need to define consistent markers of success across researchers and stakeholders. Key lessons to improve transdisciplinary research identified from the analysis are (1) improving clarity of roles and responsibilities; (2) planning to provide sufficient, continuous project funding over multiple years; (3) expecting research needs and plans to adapt to evolving circumstances; and (4) clearly defining the end of the project.


Asunto(s)
Nutrientes , Salud Pública
2.
J Air Waste Manag Assoc ; 72(6): 540-555, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34905459

RESUMEN

The release of persistent per- and polyfluoroalkyl substances (PFAS) into the environment is a major concern for the United States Environmental Protection Agency (U.S. EPA). To complement its ongoing research efforts addressing PFAS contamination, the U.S. EPA's Office of Research and Development (ORD) commissioned the PFAS Innovative Treatment Team (PITT) to provide new perspectives on treatment and disposal of high priority PFAS-containing wastes. During its six-month tenure, the team was charged with identifying and developing promising solutions to destroy PFAS. The PITT examined emerging technologies for PFAS waste treatment and selected four technologies for further investigation. These technologies included mechanochemical treatment, electrochemical oxidation, gasification and pyrolysis, and supercritical water oxidation. This paper highlights these four technologies and discusses their prospects and the development needed before potentially becoming available solutions to address PFAS-contaminated waste.Implications: This paper examines four novel, non-combustion technologies or applications for the treatment of persistent per- and polyfluoroalkyl substances (PFAS) wastes. These technologies are introduced to the reader along with their current state of development and areas for further development. This information will be useful for developers, policy makers, and facility managers that are facing increasing issues with disposal of PFAS wastes.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Estados Unidos , United States Environmental Protection Agency , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...