Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sports Med ; 53(9): 1819-1833, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37213048

RESUMEN

OBJECTIVE: We aimed to compare maternal and fetal cardiovascular responses to an acute bout of high-intensity interval training (HIIT) versus moderate-intensity continuous training (MICT) during pregnancy. METHODS: Fifteen women with a singleton pregnancy (27.3 ± 3.5 weeks of gestation, 33 ± 4 years of age) were recruited. Following a peak fitness test, participants engaged in a session of HIIT (10 × 1-min intervals ≥ 90% maximum heart rate [HRmax]) interspersed with 1 min of active recovery) and MICT (30 min at 64-76% HRmax) 48 h apart in random order. Maternal HR, blood pressure, middle (MCAv), and posterior cerebral artery blood velocity (PCAv), as well as respiratory measures were monitored continuously throughout HIIT/MICT. Fetal heart rate, as well as umbilical systolic/diastolic (S/D) ratio, resistive index (RI), and pulsatility index (PI) were assessed immediately before and after exercise. RESULTS: Average maternal heart rate was higher for HIIT (82 ± 5% HRmax) compared with MICT (74 ± 4% HRmax; p < 0.001). During the HIIT session, participants achieved a peak heart rate of 96 ± 5% HRmax (range of 87-105% HRmax). Maternal cerebral blood velocities increased with exercise but was not different between HIIT and MICT for MCAv (p = 0.340) and PCAv (p = 0.142). Fetal heart rate increased during exercise (p = 0.244) but was not different between sessions (HIIT: Δ + 14 ± 7 bpm; MICT: Δ + 10 ± 10 bpm). Metrics of umbilical blood flow decreased with exercise and were not different between exercise sessions (PI: p = 0.707; S/D ratio: p = 0.671; RI: p = 0.792). Fetal bradycardia was not observed, and S/D ratio, RI, and PI remained within normal ranges both before and immediately after all exercise sessions. CONCLUSIONS: An acute bout of HIIT exercise consisting of repeated 1-min near-maximal to maximal exertions, as well as MICT exercise is well tolerated by both mother and fetus. CLINICAL TRIAL REGISTRATION: NCT05369247.


Asunto(s)
Ejercicio Físico , Entrenamiento de Intervalos de Alta Intensidad , Humanos , Femenino , Embarazo , Estudios Cruzados , Ejercicio Físico/fisiología , Corazón , Presión Sanguínea/fisiología , Feto
2.
Eur J Appl Physiol ; 122(3): 735-743, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34978604

RESUMEN

Both voluntary rebreathing (RB) of expired air and voluntary apneas (VA) elicit changes in arterial carbon dioxide and oxygen (CO2 and O2) chemostimuli. These chemostimuli elicit synergistic increases in cerebral blood flow (CBF) and sympathetic nervous system activation, with the latter increasing systemic blood pressure. The extent that simultaneous and inverse changes in arterial CO2 and O2 and associated increases in blood pressure affect the CBF responses during RB versus VAs are unclear. We instrumented 21 healthy participants with a finometer (beat-by-beat mean arterial blood pressure; MAP), transcranial Doppler ultrasound (middle and posterior cerebral artery velocity; MCAv, PCAv) and a mouthpiece with sample line attached to a dual gas analyzer to assess pressure of end-tidal (PET)CO2 and PETO2. Participants performed two protocols: RB and a maximal end-inspiratory VA. A second-by-second stimulus index (SI) was calculated as PETCO2/PETO2 during RB. For VA, where PETCO2 and PETO2 could not be measured throughout, SI values were calculated using interpolated end-tidal gas values before and at the end of the apneas. MAP reactivity (MAPR) was calculated as the slope of the MAP/SI, and cerebrovascular reactivity (CVR) was calculated as the slope of MCAv or PCAv/SI. We found that compared to RB, VA elicited ~ fourfold increases in MAPR slope (P < 0.001), translating to larger anterior and posterior CVR (P ≤ 0.01). However, cerebrovascular conductance (MCAv or PCAv/MAP) was unchanged between interventions (P ≥ 0.2). MAP responses during VAs are larger than those during RB across similar chemostimuli, and differential CVR may be driven by increases in perfusion pressure.


Asunto(s)
Apnea/fisiopatología , Presión Arterial/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Circulación Cerebrovascular/fisiología , Sistema Nervioso Simpático/fisiología , Adulto , Dióxido de Carbono/sangre , Femenino , Voluntarios Sanos , Humanos , Masculino , Oxígeno/sangre , Intercambio Gaseoso Pulmonar , Ultrasonografía Doppler Transcraneal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA