Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 14: 143, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24886084

RESUMEN

BACKGROUND: Soybean (Glycine max) seeds are the primary source of edible oil in the United States. Despite its widespread utility, soybean oil is oxidatively unstable. Until recently, the majority of soybean oil underwent chemical hydrogenation, a process which also generates trans fats. An alternative to chemical hydrogenation is genetic modification of seed oil through identification and introgression of mutant alleles. One target for improvement is the elevation of a saturated fat with no negative cardiovascular impacts, stearic acid, which typically constitutes a minute portion of seed oil (~3%). RESULTS: We examined radiation induced soybean mutants with moderately increased stearic acid (10-15% of seed oil, ~3-5 X the levels in wild-type soybean seeds) via comparative whole genome hybridization and genetic analysis. The deletion of one SACPD isoform encoding gene (SACPD-C) was perfectly correlated with moderate elevation of seed stearic acid content. However, SACPD-C deletion lines were also found to have altered nodule fatty acid composition and grossly altered morphology. Despite these defects, overall nodule accumulation and nitrogen fixation were unaffected, at least under laboratory conditions. CONCLUSIONS: Although no yield penalty has been reported for moderate elevated seed stearic acid content in soybean seeds, our results demonstrate that genetic alteration of seed traits can have unforeseen pleiotropic consequences. We have identified a role for fatty acid biosynthesis, and SACPD activity in particular, in the establishment and maintenance of symbiotic nitrogen fixation.


Asunto(s)
Ácidos Grasos/metabolismo , Eliminación de Gen , Fijación del Nitrógeno , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/anatomía & histología , Semillas/metabolismo , Ácidos Esteáricos/metabolismo , Secuencia de Aminoácidos , Segregación Cromosómica , Cromosomas de las Plantas/genética , Hibridación Genómica Comparativa , Cruzamientos Genéticos , Metanosulfonato de Etilo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Sitios Genéticos , Datos de Secuencia Molecular , Difracción de Neutrones , Fenotipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Análisis de Secuencia de ADN , Aceite de Soja , Glycine max/genética
2.
PLoS One ; 8(12): e82485, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324798

RESUMEN

MtDef4 is a 47-amino acid cysteine-rich evolutionary conserved defensin from a model legume Medicago truncatula. It is an apoplast-localized plant defense protein that inhibits the growth of the ascomycetous fungal pathogen Fusarium graminearum in vitro at micromolar concentrations. Little is known about the mechanisms by which MtDef4 mediates its antifungal activity. In this study, we show that MtDef4 rapidly permeabilizes fungal plasma membrane and is internalized by the fungal cells where it accumulates in the cytoplasm. Furthermore, analysis of the structure of MtDef4 reveals the presence of a positively charged γ-core motif composed of ß2 and ß3 strands connected by a positively charged RGFRRR loop. Replacement of the RGFRRR sequence with AAAARR or RGFRAA abolishes the ability of MtDef4 to enter fungal cells, suggesting that the RGFRRR loop is a translocation signal required for the internalization of the protein. MtDef4 binds to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Amino acid substitutions in the RGFRRR sequence which abolish the ability of MtDef4 to enter fungal cells also impair its ability to bind PA. These findings suggest that MtDef4 is a novel antifungal plant defensin capable of entering into fungal cells and affecting intracellular targets and that these processes are mediated by the highly conserved cationic RGFRRR loop via its interaction with PA.


Asunto(s)
Antifúngicos/química , Antifúngicos/metabolismo , Defensinas/química , Defensinas/metabolismo , Medicago truncatula/química , Medicago truncatula/metabolismo , Ácidos Fosfatidicos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos/química , Antifúngicos/farmacología , Defensinas/farmacología , Fusarium/efectos de los fármacos , Fusarium/fisiología , Fusarium/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacología , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA