Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 10(11): 9817-9822, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29528212

RESUMEN

Postdeposition CdCl2 treatment of polycrystalline CdTe is known to increase the photovoltaic device efficiency. However, the precise chemical, structural, and electronic changes that underpin this improvement are still debated. In this study, spectroscopic photoemission electron microscopy was used to spatially map the vacuum level and ionization energy of CdTe films, enabling the identification of electronic structure variations between grains and grain boundaries (GBs). In vacuo preparation and inert transfer of oxide-free CdTe surfaces isolated the separate effects of CdCl2 treatment and ambient oxygen exposure. Qualitatively, grain boundaries displayed lower work function and downward band bending relative to grain interiors, but only after air exposure of CdCl2-treated CdTe. Analysis of numerous space charge regions at grain boundaries showed an average depletion width of 290 nm and an average band bending magnitude of 70 meV, corresponding to a GB trap density of 1011 cm-2 and a net carrier density of 1015 cm-3. These results suggest that both CdCl2 treatment and oxygen exposure may be independently tuned to enhance the CdTe photovoltaic performance by engineering the interface and bulk electronic structure.

2.
Sci Rep ; 8(1): 2006, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386524

RESUMEN

By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene's layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36-129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measured work function of 4.4 eV for graphene is consistent with doping levels on the order of 1012cm-2. We find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm-1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene's Fermi energy in the 'high' doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.

3.
ACS Nano ; 11(8): 8223-8230, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28723073

RESUMEN

The values of the ionization energies of transition metal dichalcogenides (TMDs) are needed to assess their potential usefulness in semiconductor heterojunctions for high-performance optoelectronics. Here, we report on the systematic determination of ionization energies for three prototypical TMD monolayers (MoSe2, WS2, and MoS2) on SiO2 using photoemission electron microscopy with deep ultraviolet illumination. The ionization energy displays a progressive decrease from MoS2, to WS2, to MoSe2, in agreement with predictions of density functional theory calculations. Combined with the measured energy positions of the valence band edge at the Brillouin zone center, we deduce that, in the absence of interlayer coupling, a vertical heterojunction comprising any of the three TMD monolayers would form a staggered (type-II) band alignment. This band alignment could give rise to long-lived interlayer excitons that are potentially useful for valleytronics or efficient electron-hole separation in photovoltaics.

4.
Rev Sci Instrum ; 79(10): 103702, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19044714

RESUMEN

We demonstrate a simple method that uses a scanning electron microscope for making a reliable low resistance contact between a single multiwalled carbon nanotube and a metallic tungsten probe tip or a Si cantilever. This method consists of using electron beam induced decomposition of background gases and voltage pulses to remove contaminants. The electrical quality of the contact is monitored in situ by measuring the current flow at constant bias or by observing the decay of current fluctuations. The quality of the contacts is confirmed via current-voltage spectroscopy. This method produces very stable, low resistance, mechanically robust contacts with high success rates approaching 100%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...