Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 198: 106539, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718522

RESUMEN

Nanoplastics and engineering nanomaterials (ENMs) are contaminants of emerging concern (CECs), increasingly being detected in the marine environment and recognized as a potential threat for marine biota at the global level including in polar areas. Few studies have assessed the impact of these anthropogenic nanoparticles in the microbiome of marine invertebrates, however combined exposure resembling natural scenarios has been overlooked. The present study aimed to evaluate the single and combined effects of polystyrene nanoparticles (PS NP) as proxy for nanoplastics and nanoscale titanium dioxide (nano-TiO2) on the prokaryotic communities associated with the gill tissue of the Antarctic soft-shell clam Laternula elliptica, a keystone species of marine benthos Wild-caught specimens were exposed to two environmentally relevant concentrations of carboxylated PS NP (PS-COOH NP, ∼62 nm size) and nano-TiO2 (Aeroxide P25, ∼25 nm) as 5 and 50 µg/L either single and combined for 96h in a semi-static condition.Our findings show a shift in microbiome composition in gills of soft-shell clams exposed to PS NP and nano-TiO2 either alone and in combination with a decrease in the relative abundance of OTU1 (Spirochaetaceae). In addition, an increase of gammaproteobacterial OTUs affiliated to MBAE14 and Methylophagaceae (involved in ammonia denitrification and associated with low-quality water), and the OTU Colwellia rossensis (previously recorded in polluted waters) was observed. Our results suggest that nanoplastics and nano-TiO2 alone and in combination induce alterations in microbiome composition by promoting the increase of negative taxa over beneficial ones in the gills of the Antarctic soft-shell clam. An increase of two low abundance OTUs in PS-COOH NPs exposed clams was also observed. A predicted gene function analysis revealed that sugar, lipid, protein and DNA metabolism were the main functions affected by either PS-COOH NP and nano-TiO2 exposure. The molecular functions involved in the altered affiliated OTUs are novel for nano-CEC exposures.

2.
R Soc Open Sci ; 10(3): 221421, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36998765

RESUMEN

Microplastics (MP) have been reported in Southern Ocean (SO), where they are likely to encounter Antarctic zooplankton and enter pelagic food webs. Here we assess the presence of MP within Antarctic krill (Euphausia superba) and salps (Salpa thompsoni) and quantify their abundance and type by micro-Fourier transform infrared microscopy. MP were found in both species, with fibres being more abundant than fragments (krill: 56.25% and salps: 22.32% of the total MP). Polymer identification indicated MP originated from both local and distant sources. Our findings prove how in situ MP ingestion from these organisms is a real and ongoing process in the SO. MP amount was higher in krill (2.13 ± 0.26 MP ind-1) than salps (1.38 ± 0.42 MP ind-1), while MP size extracted from krill (130 ± 30 µm) was significantly lower than MP size from salps (330 ± 50 µm). We suggest that differences between abundance and size of MP ingested by these two species may be related to their food strategies, their ability to fragment MP as well as different human pressures within the collection areas of the study region. First comparative field-based evidence of MP in both krill and salps, two emblematic zooplankton species of the SO marine ecosystems, underlines that Antarctic marine ecosystems may be particularly sensitive to plastic pollution.

3.
Environ Pollut ; 318: 120892, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36529345

RESUMEN

The growing concern on nanoplastics (<1 µm) impact on marine life has stimulated a significant amount of studies aiming to address ecotoxicity and disclose their mechanisms of action. Here, we applied an integrative approach to develop an Adverse Outcome Pathway (AOP) upon acute exposure to amino-modified polystyrene nanoparticles (PS-NH2 NPs, 50 nm), as proxy for nanoplastics, during the embryogenesis of the chordate Ciona robusta. Genes related to glutathione metabolism, immune defense, nervous system, transport by aquaporins and energy metabolism were affected by either concentration tested of 10 or 15 µg mL-1 of PS-NH2. Transcriptomic data and in vivo experiments were assembled into two putative AOPs, identifying as key events the adhesion of PS-NH2 as (molecular) initiating event, followed by oxidative stress, changes in transcription of specific genes, morphological defects, increase in reactive oxygen species level, impaired swimming behavior. As final adverse outcomes, altered larval development, reduced metamorphosis and inhibition of hatching were identified. Our study attempts to define AOPs for PS-NH2 without excluding that chemicals leaching from them might also have a potential role in the observed outcome. Overall data provide new insights into the mechanism of action of PS-NH2 NPs during chordate embryogenesis and offer further keys for a better knowledge of nanoplastics impact on early stages of marine life.


Asunto(s)
Ciona intestinalis , Nanopartículas , Contaminantes Químicos del Agua , Animales , Microplásticos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Nanopartículas/toxicidad , Nanopartículas/química , Poliestirenos/toxicidad , Desarrollo Embrionario , Perfilación de la Expresión Génica
4.
Mar Pollut Bull ; 186: 114353, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36436273

RESUMEN

Since the first explorers reached Antarctica, their activities have quickly impacted both land and sea and thus, together with the long-range transport, hazardous chemicals began to accumulate. It is commonly recognized that anthropogenic pollution in Antarctica can originate from either global or local sources. Heavy metals, organohalogenated compounds, hydrocarbons, and (more recently) plastic, have been found in Antarctic biota, soil sediments, seawater, air, snow and sea-ice. Studies in such remote areas are challenging and expensive, and the complexity of potential interactions occurring in such extreme climate conditions (i.e., low temperature) makes any accurate prediction on potential impacts difficult. The present review aims to summarize the current state of knowledge on occurrence and distribution of legacy and emerging pollutants in Antarctica, such as plastic, from either global or local sources. Future actions to monitor and mitigate any potential impact on Antarctic biodiversity are discussed.


Asunto(s)
Contaminantes Ambientales , Contaminantes Ambientales/análisis , Plásticos , Regiones Antárticas , Monitoreo del Ambiente , Biodiversidad
5.
Environ Pollut ; 311: 119868, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36002098

RESUMEN

Marine plastic pollution is a global and pervasive environmental issue. Knowledge on plastic degradation in natural settings is still very limited due to current technological limitations, hampering our understanding of plastic fate (including its breakdown into micro- and nanoplastics) and of its risk for marine ecosystems. Here we present the proof of concept of the Ocean Plastic Incubator Chamber (OPIC), a novel equipment to follow plastic degradation in situ at sea over time. OPIC consists of a frame containing a motorised rotating stage with transparent tubes sub-assemblies where reference plastic materials are incubated and exposed to natural weathering conditions for defined time multi-years period. OPIC has been designed, tested and adapted for deployment with mooring line platforms in the open ocean with potential future application in remote environments at different depths (from shallow waters to deep sea environments). This incubator will allow us to measure different markers of plastic aging in situ in the ocean for the first time, providing new insights into the multiple and locally driven dynamics regulating plastic transformations and fate at sea.


Asunto(s)
Ecosistema , Plásticos , Monitoreo del Ambiente , Incubadoras , Océanos y Mares
6.
Microorganisms ; 11(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36677350

RESUMEN

Five psychrotolerant Alcanivorax spp. strains were isolated from Antarctic coastal waters. Strains were screened for molecular and physiological properties and analyzed regarding their growth capacity. Partial 16S rDNA, alk-B1, and P450 gene sequencing was performed. Biolog EcoPlates and the API 20E test were used to evaluate metabolic and biochemical profiles. Bacterial growth in sodium acetate was determined at 4, 15, 20, and 25 °C to evaluate the optimal temperature. Furthermore, the ability of each strain to grow in a hydrocarbon mixture at 4 and 25 °C was assayed. Biosurfactant production tests (drop-collapse and oil spreading) and emulsification activity tests (E24) were also performed. Concerning results of partial gene sequencing (16S rDNA, alk-B1, and P450), a high similarity of the isolates with the same genes isolated from other Alcanivorax spp. strains was observed. The metabolic profiles obtained by Biolog assays showed no significant differences in the isolates compared to the Alcanivorax borkumensis wild type. The results of biodegradative tests showed their capability to grow at different temperatures. All strains showed biosurfactant production and emulsification activity. Our findings underline the importance to proceed in the isolation and characterization of Antarctic hydrocarbon-degrading bacterial strains since their biotechnological and environmental applications could be useful even for pollution remediation in polar areas.

7.
Nanomaterials (Basel) ; 11(8)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34443734

RESUMEN

Marine nano-ecotoxicology has emerged with the purpose to assess the environmental risks associated with engineered nanomaterials (ENMs) among contaminants of emerging concerns entering the marine environment. ENMs' massive production and integration in everyday life applications, associated with their peculiar physical chemical features, including high biological reactivity, have imposed a pressing need to shed light on risk for humans and the environment. Environmental safety assessment, known as ecosafety, has thus become mandatory with the perspective to develop a more holistic exposure scenario and understand biological effects. Here, we review the current knowledge on behavior and impact of ENMs which end up in the marine environment. A focus on titanium dioxide (n-TiO2) and silver nanoparticles (AgNPs), among metal-based ENMs massively used in commercial products, and polymeric NPs as polystyrene (PS), largely adopted as proxy for nanoplastics, is made. ENMs eco-interactions with chemical molecules including (bio)natural ones and anthropogenic pollutants, forming eco- and bio-coronas and link with their uptake and toxicity in marine organisms are discussed. An ecologically based design strategy (eco-design) is proposed to support the development of new ENMs, including those for environmental applications (e.g., nanoremediation), by balancing their effectiveness with no associated risk for marine organisms and humans.

8.
Nanomaterials (Basel) ; 11(5)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063431

RESUMEN

Benzo(a)pyrene (B(a)P) is a well-known genotoxic agent, the removal of which from environmental matrices is mandatory, necessitating the application of cleaning strategies that are harmless to human and environmental health. The potential application of nanoparticles (NPs) in the remediation of polluted environments is of increasing interest. Here, specifically designed NPs were selected as being non-genotoxic and able to interact with B(a)P, in order to address the genetic and chromosomal damage it produces. A newly formulated pure anatase nano-titanium (nano-TiO2), a commercial mixture of rutile and anatase, and carbon black-derived hydrophilic NPs (HNP) were applied. Once it had been ascertained that the NPs selected for the work did not induce genotoxicity, marine mussel gill biopsies were exposed in vitro to B(a)P (2 µg/mL), alone and in combination with the selected NPs (50 µg/mL nano-TiO2, 10 µg/mL HNP). DNA primary reversible damage was evaluated by means of the Comet assay. Chromosomal persistent damage was assessed on the basis of micronuclei frequency and nuclear abnormalities by means of the Micronucleus-Cytome assay. Transmission Electron Microscopy (TEM) was performed to investigate the mechanism of action exerted by NPs. Pure Anatase n-TiO2 was found to be the most suitable for our purpose, as it is cyto- and genotoxicity free and able to reduce the genetic and chromosomal damage associated with exposure to B(a)P.

9.
J Hazard Mater ; 414: 125586, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34030422

RESUMEN

In Antarctic regions, the composition and metabolic activity of microbial assemblages associated with plastic debris ("plastisphere") are almost unknown. A macroplastic item from land (MaL, 30 cm) and a mesoplastic from the sea (MeS, 4 mm) were collected in Maxwell Bay (King George Island, South Shetland) and analyzed by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR), which confirmed a polystyrene foam and a composite high-density polyethylene composition for MaL and MeS, respectively. The structure and function of the two plastic-associated prokaryotic communities were studied by complementary 16S ribosomal RNA gene clone libraries, total bacterioplankton and culturable heterotrophic bacterial counts, enzymatic activities of the whole community and enzymatic profiles of bacterial isolates. Results showed that Gamma- and Betaproteobacteria (31% and 28%, respectively) dominated in MeS, while Beta- and Alphaproteobacteria (21% and 13%, respectively) in MaL. Sequences related to oil degrading bacteria (Alcanivorax,Marinobacter) confirmed the known anthropogenic pressure in King George Island. This investigation on plastic-associated prokaryotic structure and function represents the first attempt to characterize the ecological role of plastisphere in this Antarctic region and provides the necessary background for future research on the significance of polymer type, surface characteristics and environmental conditions in shaping the plastisphere.


Asunto(s)
Alcanivoraceae , Plásticos , Regiones Antárticas , Bacterias/genética , Poliestirenos
10.
Environ Sci Pollut Res Int ; 28(33): 45317-45334, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33860426

RESUMEN

The increasing use and disposal of plastics has become a persistent problem in the marine environment, calling for studies that refer to realistic scenarios to understand their effects on biota. Particularly, the understanding about the effects of co-exposure with nanoplastic particles and metals on aquatic organisms is still limited. The present work aimed to investigate the acute toxicity of amino-functionalized polystyrene nanoparticles (PS-NH2; 50 nm) as proxy for nanoplastics on brine shrimp Artemia franciscana larvae under different culture conditions and at different stages of development, as well as the combined effect with two reference toxicants - potassium dichromate (K2Cr2O7) and copper sulfate (CuSO4). Nauplii (instar II or III larval stages) were exposed to different concentrations of PS-NH2 (0.005 to 5 µg mL-1) for up to 48 h, with or without agitation in order to mimic a more realistic environmental scenario. Larval mobility and PS-NH2 accumulation were monitored under microscopy. PS-NH2 alone showed toxicity only at the highest concentration tested (5 µg mL-1) regardless the incubation method used (61.2 + 3.1% and 65.0 + 4.5% with and without agitation, respectively). Moreover, instar III stage was the most sensitive to PS-NH2 exposure (38.2% immobility in 24 h of exposure; 5 µg mL-1). Evidence of PS-NH2 retention in the gastrointestinal tract in a concentration- and time-dependent manner was also obtained. Mixtures of PS-NH2 (0.005 and 5 µg mL-1) with different concentrations of K2Cr2O7 increased the immobilization rate of the larvae after 48 h of exposure, when compared to the K2Cr2O7 alone. Similar results were observed for CuSO4 in the co-exposure conditions at different concentrations. However, exposing nauplii to a mixture of PS-NH2 (0.005 µg mL-1) and CuSO4 decreased immobilization rate, in comparison to the group exposed to CuSO4 alone. The present work highlights the potential risk posed by nanoplastics to zooplanktonic species through their interaction with other toxicants.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Artemia , Sulfato de Cobre/toxicidad , Larva , Poliestirenos , Dicromato de Potasio/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
11.
Environ Res ; 196: 110344, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33068585

RESUMEN

The air humidity in Antarctica is very low and this peculiar weather parameter make the use of flame retardants in research facilities highly needed for safety reasons, as fires are a major risk. Legacy and novel flame retardants (nFRs) including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), Dechlorane Plus (DP), and other nFRs were measured in indoor dust samples collected at research Stations in Antarctica: Gabriel de Castilla, Spain (GCS), Julio Escudero, Chile (JES), and onboard the RRS James Clark Ross, United Kingdom (RRS JCR). The GC-HRMS and LC-MS-MS analyses of dust samples revealed ∑7PBDEs of 41.5 ± 43.8 ng/g in rooms at GCS, 18.7 ± 11.6 ng/g at JES, and 27.2 ± 37.9 ng/g onboard the RRS JCR. PBDE pattern was different between the sites and most abundant congeners were BDE-183 (40%) at GCS, BDE-99 (50%) at JES, and BDE-153 (37%) onboard the RRS JCR. The ∑(4)HBCDs were 257 ± 407 ng/g, 14.9 ± 14.5 ng/g, and 761 ± 1043 ng/g in indoor dust collected in rooms at GCS, JES, and RRS JCR, respectively. The ∑9nFRs were 224 ± 178 ng/g at GCS, 14.1 ± 13.8 ng/g at JES, and 194 ± 392 ng/g on the RRS JCR. Syn- and anti-DP were detected in most of the samples and both isomers showed the highest concentrations at GCS: 163 ± 93.6 and 48.5 ± 61.1 ng/g, respectively. The laboratory and living room showed the highest concentration of HBCDs, DPs, BTBPE. The wide variations in FR levels in dust from the three research facilities and between differently used rooms reflect the different origin of furnishing, building materials and equipment. The potential health risk associated to a daily exposure via dust ingestion was assessed for selected FRs: BDEs 47, 99, and 153, α-, ß-, and γ-HBCD, BTBPE, syn- and anti-DP. Although the estimated exposures are below the available reference doses, caution is needed given the expected increasing use of novel chemicals without a comprehensive toxicological profile.


Asunto(s)
Contaminación del Aire Interior , Retardadores de Llama , Contaminación del Aire Interior/análisis , Regiones Antárticas , Chile , Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Humanos , España , Reino Unido
13.
Nanotoxicology ; 14(10): 1415-1431, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33186509

RESUMEN

Nanoplastics are considered contaminants of emerging concern at the global scale. The recent evidence of their occurrence in seawater from the Mediterranean Sea calls for a thorough evaluation of their impact on marine life and in particular on vulnerable life stages such as planktonic embryos. Here, we investigated the impact of increasing nominal concentrations of 50 nm amino-modified (PS-NH2) and 60 nm carboxy-modified (PS-COOH) polystyrene nanoparticles (PS NPs) on the embryonic development of the ascidian Ciona robusta (phylum Chordata), a common benthic invertebrate living in Mediterranean coastal areas with the peculiarity of being an early chordate developmental model. A strong agglomeration of PS-COOH (approx. 1 µm) was observed in natural sea water (NSW) already at time 0, while PS-NH2 resulted still monodispersed (approx. 130 nm) but largely aggregated after 22 h with a microscale dimension similar to those negatively charged. However, their effect on C. robusta embryos development largely differed at 22 h: PS-COOH did not affect larvae phenotypes nor their development, while PS-NH2 caused a dose-dependent effect (EC50 (22 h) of 7.52 µg mL-1) with various degrees of phenotype malformations (from mild to severe) and impairment of larval swimming. Embryos (up to 30%) exposed to 15 µg mL-1 PS-NH2 resulted not developed and the majority was unable to hatch. Calculated PS-NH2 EC50 resulted higher than those available for other marine invertebrate species, suggesting a protective role of the egg envelopes surrounding C. robusta embryos toward nanoplastics exposure.


Asunto(s)
Ciona intestinalis/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Microplásticos/toxicidad , Nanopartículas/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Ciona intestinalis/crecimiento & desarrollo , Embrión no Mamífero/efectos de los fármacos , Larva/efectos de los fármacos , Agua de Mar/química
14.
Biol Lett ; 16(6): 20200093, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32574531

RESUMEN

There is evidence and serious concern that microplastics have reached the most remote regions of the planet, but how far have they travelled in terrestrial ecosystems? This study presents the first field-based evidence of plastic ingestion by a common and central component of Antarctic terrestrial food webs, the collembolan Cryptopygus antarcticus. A large piece of polystyrene (PS) foam (34 × 31 × 5 cm) covered by microalgae, moss, lichens and microfauna was found in a fellfield along the shores of the Fildes Peninsula (King George Island). The application of an improved enzymatic digestion coupled with Fourier transform infrared microscopy (µ-FTIR), unequivocally detected traces of PS (less than 100 µm) in the gut of the collembolans associated with the PS foam and documented their ability to ingest plastic. Plastics are thus entering the short Antarctic terrestrial food webs and represent a new potential stressor to polar ecosystems already facing climate change and increasing human activities. Future research should explore the effects of plastics on the composition, structure and functions of polar terrestrial biota.


Asunto(s)
Plásticos , Poliestirenos , Animales , Regiones Antárticas , Ecosistema , Monitoreo del Ambiente , Humanos , Islas
15.
Sci Rep ; 9(1): 19441, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31857637

RESUMEN

The adverse effects of engineered nanomaterials (ENM) in marine environments have recently attracted great attention although their effects on marine benthic organisms such as foraminifera are still largely overlooked. Here we document the effects of three negatively charged ENM, different in size and composition, titanium dioxide (TiO2), polystyrene (PS) and silicon dioxide (SiO2), on a microbial eukaryote (the benthic foraminifera Ammonia parkinsoniana) using multiple approaches. This research clearly shows the presence, within the foraminiferal cytoplasm, of metallic (Ti) and organic (PS) ENM that promote physiological stress. Specifically, marked increases in the accumulation of neutral lipids and enhanced reactive oxygen species production occurred in ENM-treated specimens regardless of ENM type. This study indicates that ENM represent ecotoxicological risks for this microbial eukaryote and presents a new model for the neglected marine benthos by which to assess natural exposure scenarios.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Foraminíferos/efectos de los fármacos , Nanopartículas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos/fisiología , Monitoreo del Ambiente , Foraminíferos/fisiología , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Poliestirenos/toxicidad , Agua de Mar/química , Agua de Mar/microbiología , Dióxido de Silicio/toxicidad , Estrés Fisiológico/efectos de los fármacos , Titanio/toxicidad
16.
Aquat Toxicol ; 211: 46-56, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30946994

RESUMEN

The incorporation of silver nanoparticles (AgNPs) in commercial products is increasing rapidly. The consequent release of AgNPs into domestic and industrial wastewater raises environmental concerns due to their anti-microbial properties and toxicity to non-target aquatic organisms. The aim of the present study was to investigate the effects of nanArgen™ (Nanotek S.A.), a AgNP-enabled consumer product, in the marine bivalve Mytilus galloprovincialis. Two environmentally relevant concentrations of nanArgen™ (1 and 10 µg/L) were tested in vivo for 96 h, and Ag was quantified in mussel soft tissue and natural seawater (NSW). nanArgen™ suspensions were characterized via TEM, SEM, EDS, DLS, and UV-vis optical analysis. Several molecular and biochemical responses were investigated in exposed mussels: lysosomal membrane stability by Neutral Red Retention Time (NRRT) assay; micronucleus (MN) frequency in hemocytes; metallothionein (MT) protein content and gene expression (mt10 and mt20); catalase (CAT) and glutathione-S-transferase (GST) activities; malondialdehyde (MDA) accumulation in digestive glands; and efflux activity of ATP-binding cassette transport proteins (ABC) in gill biopsies. SEM, TEM and DLS analyses confirmed the presence of well-defined AgNPs in nanArgen™ which were roughly spherical with an average particle size of approx. 30 ± 10 nm. DLS analysis revealed the formation of AgNP aggregates in nanArgen™ suspension in NSW (Z-average of 547.80 ± 90.23 nm; PDI of 0.044). A significant concentration-dependent accumulation of Ag was found in mussels' whole soft tissue in agreement with a concentration-dependent decrease in NRRT and an increase of MN frequency in hemocytes and GST activities in digestive glands. A significant increase in MDA levels and MT via both molecular and biochemical tests, were also observed but only at the highest nanArgen™ concentration (10 µg/L). No changes were observed in CAT activities. ABC efflux activities in gill biopsies showed a significant decrease (p < 0.05) only at the lowest concentration (1 µg/L). On such basis, nanArgen™ is shown to be able to induce toxicity and Ag accumulation in marine mussels similarly to AgNPs and in short-term exposure conditions at environmentally relevant concentrations. AgNP-enabled products, instead of pristine AgNPs, should be the focus of future ecotoxicity studies in order to address any risks associated to their widespread use, disposal and uncontrolled release into the aquatic environment for non target species.


Asunto(s)
Nanopartículas del Metal/toxicidad , Mytilus/efectos de los fármacos , Plata/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Catalasa/metabolismo , Relación Dosis-Respuesta a Droga , Branquias/química , Branquias/efectos de los fármacos , Branquias/metabolismo , Hemocitos/efectos de los fármacos , Hemocitos/patología , Lisosomas/efectos de los fármacos , Nanopartículas del Metal/análisis , Metalotioneína/metabolismo , Micronúcleos con Defecto Cromosómico/inducido químicamente , Mytilus/química , Mytilus/metabolismo , Agua de Mar/química , Plata/análisis , Contaminantes Químicos del Agua/análisis
17.
Sci Total Environ ; 675: 570-580, 2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31030162

RESUMEN

Micro- (<5 mm) and nanoplastics (<1 µm) are emerging threats for marine ecosystems worldwide. Brine shrimp Artemia is recognized as a suitable model among planktonic species for studying the impact of polystyrene nanoparticles (PS NPs) through short and long-term bioassays. Our study aims to evaluate the time-dependent effects of cationic amino-modified PS-NH2 (50 nm) in A. franciscana after short- (48 h) and long-term exposure (14 days). For this purpose, nauplii were exposed to a concentration range of PS-NH2 (0.1, 1, 3 and 10 µg/mL) in natural sea water (NSW), and physiological, biochemical and molecular responses were investigated. Short-term exposure to PS-NH2 caused a decrease in nauplii growth and affected the development in a concentration-dependent manner, long-term exposure impaired the survival, but not the growth and feeding behavior. Oxidative stress was detected after short term exposure as the decrease in the activity of antioxidant enzymes, and was fully evident in the long-term as lipid peroxidation, suggesting an accumulative effect. The decrease in Cholinesterase (ChE) activity observed indicates possible neurotoxic action of PS-NH2. Also, Carboxylesterase (CbE) inhibition by PS-NH2, described for the first time in this study, anticipates potential effects in biotransformation of exogenous and endogenous compounds, being the crustacean juvenile hormone methyl farnesoate (MF) that regulates development and molting, one candidate. Furthermore, short- and long-term exposure to PS-NH2 affect the expression of genes involved in cell protection, development and molting. Overall, our results reveal that low PS-NH2 concentrations induce physiological, biochemical and molecular (changes in gene expression) alterations in Artemia, and point at their potential risk for this model organism, supporting the general concern about nanoplastics occurrences in aquatic environments and their ability to represent an ecological threat for aquatic zooplanktonic species.


Asunto(s)
Artemia/fisiología , Nanopartículas/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Artemia/química , Artemia/efectos de los fármacos , Nanopartículas/análisis , Poliestirenos/análisis , Contaminantes Químicos del Agua/análisis
18.
Int J Hyg Environ Health ; 222(1): 89-100, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30174218

RESUMEN

The retrieval of a polystyrene macro-plastic piece stranded on the shores in King George Island (South Shetlands, Antarctica) gave the opportunity to explore the associated bacterial flora. A total of 27 bacterial isolates were identified by molecular 16s rRNA gene sequencing and 7 strains were selected and screened for their ability to produce biofilm and antibiotic susceptibility profiles. All the bacterial isolates were able to produce biofilm. The Kirby-Bauer disk diffusion susceptibility test to 34 antibiotics showed multiple antibiotic resistances against the molecules cefuroxime and cefazolin (belonging to cephalosporins), cinoxacin (belonging to quinolones) and ampicillin, amoxicillin + clavulanic acid, carbenicillin and mezlocillin (belonging to beta-lactams). The obtained results suggest that plastics can serve as vectors for the spread of multiple resistances to antibiotics across Antarctic marine environments and underline the relevance of future studies on this topic.


Asunto(s)
Farmacorresistencia Bacteriana , Microbiología Ambiental , Poliestirenos , Regiones Antárticas
19.
Nanotoxicology ; 11(2): 201-209, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28091127

RESUMEN

Polystyrene nanoparticles have been shown to pose serious risk to marine organisms including sea urchin embryos based on their surface properties and consequently behaviour in natural sea water. The aim of this study is to investigate the toxicity pathways of amino polystyrene nanoparticles (PS-NH2, 50 nm) in Paracentrotus lividus embryos in terms of development and signalling at both protein and gene levels. Two sub-lethal concentrations of 3 and 4 µg/mL of PS-NH2 were used to expose sea urchin embryos in natural sea water (PS-NH2 as aggregates of 143 ± 5 nm). At 24 and 48 h post-fertilisation (hpf) embryonic development was monitored and variations in the levels of key proteins involved in stress response and development (Hsp70, Hsp60, MnSOD, Phospho-p38 Mapk) as well as the modulation of target genes (Pl-Hsp70, Pl-Hsp60, Pl-Cytochrome b, Pl-p38 Mapk, Pl-Caspase 8, Pl-Univin) were measured. At 48 hpf various striking teratogenic effects were observed such as the occurrence of cells/masses randomly distributed, severe skeletal defects and delayed development. At 24 hpf a significant up-regulation of Pl-Hsp70, Pl-p38 Mapk, Pl-Univin and Pl-Cas8 genes was found, while at 48 hpf only for Pl-Univin was observed. Protein profile showed different patterns as a significant increase of Hsp70 and Hsp60 only after 48 hpf compared to controls. Conversely, P-p38 Mapk protein significantly increased at 24 hpf and decreased at 48 hpf. Our findings highlight that PS-NH2 are able to disrupt sea urchin embryos development by modulating protein and gene profile providing new understandings into the signalling pathways involved.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Nanopartículas/toxicidad , Paracentrotus/efectos de los fármacos , Poliestirenos/toxicidad , Transducción de Señal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Aminas/química , Animales , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Nanopartículas/química , Paracentrotus/embriología , Paracentrotus/genética , Paracentrotus/metabolismo , Poliestirenos/química , Agua de Mar/química , Contaminantes Químicos del Agua/química
20.
Environ Res ; 150: 73-81, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27257827

RESUMEN

The bivalve Mytilus galloprovincialis has proven as a suitable model invertebrate for evaluating the potential impact of nanoparticles (NPs) in the marine environment. In particular, in mussels, the immune system represents a sensitive target for different types of NPs. In environmental conditions, both NP intrinsic properties and those of the receiving medium will affect particle behavior and consequent bioavailability/uptake/toxicity. However, the evaluation of the biological effects of NPs requires additional understanding of how, once within the organism, NPs interact at the molecular level with cells in a physiological environment. In mammalian systems, different NPs associate with serum soluble components, organized into a "protein corona", which affects particle interactions with target cells. However, no information is available so far on the interactions of NPs with biological fluids of aquatic organisms. In this work, the influence of hemolymph serum (HS) on the in vitro effects of amino modified polystyrene NPs (PS-NH2) on Mytilus hemocytes was investigated. Hemocytes were incubated with PS-NH2 suspensions in HS (1, 5 and 50µg/mL) and the results were compared with those obtained in ASW medium. Cell functional parameters (lysosomal membrane stability, oxyradical production, phagocytosis) were evaluated, and morphological changes were investigated by TEM. The activation state of the signalling components involved in Mytilus immune response (p38 MAPK and PKC) was determined. The results show that in the presence of HS, PS-NH2 increased cellular damage and ROS production with respect to ASW medium. The effects were apparently mediated by disregulation of p38 MAPK signalling. The formation of a PS-NH2-protein corona in HS was investigated by centrifugation, and 1D- gel electrophoresis and nano-HPLC-ESI-MS/MS. The results identified the Putative C1q domain containing protein (MgC1q6) as the only component of the PS-NH2 hard protein corona in Mytilus hemolymph. These data represent the first evidence for the formation of a NP bio-corona in aquatic organisms and underline the importance of the recognizable biological identity of NPs in physiological exposure medium when testing their potential impact environmental model organisms. Although the results obtained in vitro do not entirely reflect a realistic exposure scenario and the more complex formation of a bio-corona that is likely to occur in vivo, these data will contribute to a better understanding of the effects of NPs in marine invertebrates.


Asunto(s)
Hemocitos/efectos de los fármacos , Mytilus/efectos de los fármacos , Nanopartículas/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Cationes/toxicidad , Hemocitos/metabolismo , Hemolinfa/efectos de los fármacos , Hemolinfa/metabolismo , Mytilus/metabolismo , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...