Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 62(31): 8308-8315, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037934

RESUMEN

The optical chain and logger (OptiCAL) is an autonomous ice-tethered observatory equipped with multiple light sensors for mapping the variation of light with depth. We describe the instrument and present an ensemble calibration for downwelling irradiance E P A R in [µm o l m -2 s -1]. Results from a long-term deployment in the Arctic Ocean demonstrate that the OptiCAL can cover the high dynamic range of under-ice light levels from July to November and produce realistic values in terms of magnitude when compared to modeled surface irradiance. Transient features of raised light levels at specific depths associated with nearby leads in the ice underline the importance of depth-resolved light measurements.

2.
iScience ; 26(3): 106168, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36876122

RESUMEN

Marine organisms living at high latitudes are faced with a light climate that undergoes drastic annual changes, especially during the polar night (PN) when the sun remains below the horizon for months. This raises the question of a possible synchronization and entrainment of biological rhythms under the governance of light at very low intensities. We analyzed the rhythms of the mussel Mytilus sp. during PN. We show that (1) mussels expressed a rhythmic behavior during PN; (2) a monthly moonlight rhythm was expressed; (3) a daily rhythm was expressed and influenced by both sunlight and moonlight; and (4) depending on the different times of PN and moon cycle characteristics, we were able to discriminate whether the moon or the sun synchronize the daily rhythm. Our findings fuel the idea that the capability of moonlight to synchronize daily rhythms when sunlight is not sufficient would be a crucial advantage during PN.

3.
Ecol Evol ; 12(12): e9569, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36514547

RESUMEN

Knowledge of environmental preferences of the key planktonic species, such as Calanus copepods in the Arctic, is crucial to understand ecosystem function and its future under climate change. Here, we assessed the environmental conditions influencing the development stages of Atlantic Calanus finmarchicus and Arctic Calanus glacialis, and we quantified the extent to which their niches overlap by incorporating multiple environmental data. We based our analysis on a 3-year seasonal collection of zooplankton by sediment traps, located on moorings in two contrasting Svalbard fjords: the Arctic Rijpfjorden and the Atlantic-influenced Kongsfjorden. Despite large differences in water temperature between the fjords, local realized ecological niches of the sibling Calanus species overlapped almost perfectly. The exception was the earliest copepodites of C. glacialis in Rijpfjorden, which probably utilized the local ice algal bloom in spring. However, during periods with no sea ice, like in Kongsfjorden, the siblings of both Calanus species showed high synchronization in the population structure. Interestingly, differences in temperature preferences of C. finmarchicus and C. glacialis were much higher between the studied fjords than between the species. Our analysis confirmed the high plasticity of Calanus copepods and their abilities to adapt to highly variable environmental settings, not only on an interannual basis but also in a climate warming context, indicating some resilience in the Calanus community.

4.
Glob Chang Biol ; 28(18): 5346-5367, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35583661

RESUMEN

The globally widespread adoption of Artificial Light at Night (ALAN) began in the mid-20th century. Yet, it is only in the last decade that a renewed research focus has emerged into its impacts on ecological and biological processes in the marine environment that are guided by natural intensities, moon phase, natural light and dark cycles and daily light spectra alterations. The field has diversified rapidly from one restricted to impacts on a handful of vertebrates, to one in which impacts have been quantified across a broad array of marine and coastal habitats and species. Here, we review the current understanding of ALAN impacts in diverse marine ecosystems. The review presents the current state of knowledge across key marine and coastal ecosystems (sandy and rocky shores, coral reefs and pelagic) and taxa (birds and sea turtles), introducing how ALAN can mask seabird and sea turtle navigation, cause changes in animals predation patterns and failure of coral spawning synchronization, as well as inhibition of zooplankton Diel Vertical Migration. Mitigation measures are recommended, however, while strategies for mitigation were easily identified, barriers to implementation are poorly understood. Finally, we point out knowledge gaps that if addressed would aid in the prediction and mitigation of ALAN impacts in the marine realm.


Asunto(s)
Antozoos , Ecosistema , Animales , Arrecifes de Coral , Luz , Contaminación Lumínica
5.
PLoS Biol ; 19(10): e3001413, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34665816

RESUMEN

Light plays a fundamental role in the ecology of organisms in nearly all habitats on Earth and is central for processes such as vision and the entrainment of the circadian clock. The poles represent extreme light regimes with an annual light cycle including periods of Midnight Sun and Polar Night. The Arctic Ocean extends to the North Pole, and marine light extremes reach their maximum extent in this habitat. During the Polar Night, traditional definitions of day and night and seasonal photoperiod become irrelevant since there are only "twilight" periods defined by the sun's elevation below the horizon at midday; we term this "midday twilight." Here, we characterize light across a latitudinal gradient (76.5° N to 81° N) during Polar Night in January. Our light measurements demonstrate that the classical solar diel light cycle dominant at lower latitudes is modulated during Arctic Polar Night by lunar and auroral components. We therefore question whether this particular ambient light environment is relevant to behavioral and visual processes. We reveal from acoustic field observations that the zooplankton community is undergoing diel vertical migration (DVM) behavior. Furthermore, using electroretinogram (ERG) recording under constant darkness, we show that the main migratory species, Arctic krill (Thysanoessa inermis) show endogenous increases in visual sensitivity during the subjective night. This change in sensitivity is comparable to that under exogenous dim light acclimations, although differences in speed of vision suggest separate mechanisms. We conclude that the extremely weak midday twilight experienced by krill at high latitudes during the darkest parts of the year has physiological and ecological relevance.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Euphausiacea/fisiología , Euphausiacea/efectos de la radiación , Luz , Acústica , Animales , Organismos Acuáticos/fisiología , Atmósfera , Modelos Biológicos , Visión Ocular/fisiología , Zooplancton/fisiología
6.
Appl Opt ; 60(22): 6456-6468, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612881

RESUMEN

The ArcLight observatory provides hourly continuous time series of light regime data (intensity, spectral composition, and photoperiod) from the Arctic, Svalbard at 79° N. Until now, no complete annual time series of biologically relevant light has been provided from the high Arctic due to insufficient sensitivity of commercial light sensors during the Polar Night. We describe a camera system providing all-sky images and the corresponding integrated spectral irradiance (EPAR) in energy or quanta units, throughout a complete annual cycle. We present hourly-diel-annual dynamics from 2017 to 2020 of irradiance and its relation to weather conditions, sun and moon trajectories.

7.
Sci Rep ; 11(1): 14941, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294780

RESUMEN

In situ observations of pelagic fish and zooplankton with optical instruments usually rely on external light sources. However, artificial light may attract or repulse marine organisms, which results in biased measurements. It is often assumed that most pelagic organisms do not perceive the red part of the visible spectrum and that red light can be used for underwater optical measurements of biological processes. Using hull-mounted echosounders above an acoustic probe or a baited video camera, each equipped with light sources of different colours (white, blue and red), we demonstrate that pelagic organisms in Arctic and temperate regions strongly avoid artificial light, including visible red light (575-700 nm), from instruments lowered in the water column. The density of organisms decreased by up to 99% when exposed to artificial light and the distance of avoidance varied from 23 to 94 m from the light source, depending on colours, irradiance levels and, possibly, species communities. We conclude that observations from optical and acoustic instruments, including baited cameras, using light sources with broad spectral composition in the 400-700 nm wavelengths do not capture the real state of the ecosystem and that they cannot be used alone for reliable abundance estimates or behavioural studies.


Asunto(s)
Peces/fisiología , Luz/efectos adversos , Zooplancton/fisiología , Acústica/instrumentación , Animales , Organismos Acuáticos/fisiología , Conducta Animal/fisiología , Conservación de los Recursos Naturales/métodos , Dispositivos Ópticos/efectos adversos , Grabación en Video/instrumentación
8.
Biol Lett ; 17(2): 20200810, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33622076

RESUMEN

The predation risk of many aquatic taxa is dominated by visually searching predators, commonly a function of ambient light. Several studies propose that changes in visual predation will become a major climate-change impact on polar marine ecosystems. The High Arctic experiences extreme seasonality in the light environment, from 24 h light to 24 h darkness, and therefore provides a natural laboratory for studying light and predation risk over diel to seasonal timescales. Here, we show that zooplankton (observed using acoustics) in an Arctic fjord position themselves vertically in relation to light. A single isolume (depth-varying line of constant light intensity, the value of which is set at the lower limit of photobehaviour reponses of Calanus spp. and krill) forms a ceiling on zooplankton distribution. The vertical distribution is structured by light across timescales, from the deepening of zooplankton populations at midday as the sun rises in spring, to the depth to which zooplankton ascend to feed during diel vertical migration. These results suggest that zooplankton might already follow a foraging strategy that will keep visual predation risk roughly constant under changing light conditions, such as those caused by the reduction of sea ice, but likely with energetic costs such as lost feeding opportunities as a result of altered habitat use.


Asunto(s)
Copépodos , Zooplancton , Animales , Regiones Árticas , Ecosistema , Conducta Predatoria
9.
Sci Total Environ ; 773: 145599, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33592480

RESUMEN

Svalbard fjords are facing a significant increase in Atlantic water inflow, which influences all ecosystem components, thus the objective of this study was to assess how recent Atlantification impacts the functioning of zooplankton community. For this purpose, two year-round operating sediment traps and associated hydrographic instruments, providing continuous time series of zooplankton and sediment fluxes, were deployed in the Atlantic-influenced Kongsfjorden and the typical high Arctic fjord Rijpfjorden. We used multivariate statistical methods to analyze how environmental variables, including the sediment fluxes, influence the zooplankton communities in the fjords. We found out that sedimentation rates were an order of magnitude higher in Kongsfjorden (reaching 39.7 g m-2 d-1 in December) and increased in autumn, while in Rijpfjorden, they peaked in late winter - early spring (2.9 g m-2 d-1 in February). Such sediment flux patterns might result from the redeposition of sediments from shallower, subtidal areas and were probably connected to autumn/winter storms. According to multivariate analyses, zooplankton in Kongsfjorden were significantly influenced by water temperature, which explained 22% of their variation, and the flux of organic and mineral sediments explaining 15% and 7.8%, respectively; while in Rijpfjorden, it was sea ice (25.3%), water temperature (16.2%), salinity (8.1%), and mineral sedimentation (6.3%). The structure of zooplankton communities in both fjords was similar in winter; in Kongsfjorden, zooplankton kept developing through spring and summer, while in the Arctic Rijpfjorden, the community paused until the onset of phytoplankton bloom and sea ice break-up in summer, to finally achieve, in autumn, a similar species and development stage structure as summer in the Atlantic-influenced fjord. Our study demonstrates how integrating multiple pieces of information can provide key insights into the relations between Atlantification, sediment flux, and zooplankton community, thus helping to assess the functioning of high Arctic ecosystems under climate change conditions.


Asunto(s)
Estuarios , Zooplancton , Animales , Regiones Árticas , Ecosistema , Svalbard
10.
R Soc Open Sci ; 7(10): 200889, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33204461

RESUMEN

Polar regions are currently warming at a rate above the global average. One issue of concern is the consequences on biodiversity in relation to the Northward latitudinal shift in distribution of temperate species. In the present study, lasting almost two years, we examined two phenological traits, i.e. the shell growth and behavioural rhythm of a recently re-established species in the high Arctic, the blue mussel Mytilus sp. We compared this with a native species, the Islandic scallop Chlamys islandica. We show marked differences in the examined traits between the two species. In Mytilus sp., a clear annual pattern of shell growth strongly correlated to the valve behaviour rhythmicity, whereas C. islandica exhibited a shell growth pattern with a total absence of annual rhythmicity of behaviour. The shell growth was highly correlated to the photoperiod for the mussels but weaker for the scallops. The water temperature cycle was a very weak parameter to anticipate the phenology traits of both species. This study shows that the new resident in the high Arctic, Mytilus sp., is a highly adaptive species, and therefore a promising bioindicator to study the consequences of biodiversity changes due to global warming.

11.
Mar Environ Res ; 162: 105166, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33049544

RESUMEN

In the Arctic, seasonal patterns in seawater biochemical conditions are shaped by physical, chemical, and biological processes related to the alternation of seasons, i.e. winter polar night and summer midnight sun. In summertime, CO2 concentration is driven by photosynthetic activity of autotrophs which raises seawater pH and carbonate saturation state (Ω). In addition, restriction of photosynthetic activity to the euphotic zone and establishment of seasonal stratification often leads to depth gradients in pH and Ω. In winter, however, severely reduced primary production along with respiration processes lead to higher CO2 concentrations which consequently decrease seawater pH and Ω. Many calcifying invertebrates incorporate other metals, in addition to calcium, into their skeletons, with potential consequences for stability of the mineral matrix and vulnerability to abrasion of predators. We tested whether changes in seawater chemistry due to light-driven activities of marine biota can influence the uptake of Mg into calcified skeletons of Arctic Bryozoa, a dominant faunal group in polar hard-bottom habitats. Our results indicate no clear differences between summer and winter levels of skeletal MgCO3 in five bryozoan species despite differences in Ω between these two seasons. Furthermore, we could not detect any depth-related differences in MgCO3 content in skeletons of selected bryozoans. These results may indicate that Arctic bryozoans are able to control MgCO3 skeletal concentrations biologically. Yet recorded spatial variability in MgCO3 content in skeletons from stations exhibiting different seawater parameters suggests that environmental factors can also, to some extent, shape the skeletal chemistry of Arctic bryozoans.


Asunto(s)
Briozoos , Animales , Regiones Árticas , Estaciones del Año , Agua de Mar , Esqueleto
12.
Commun Biol ; 3(1): 102, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139805

RESUMEN

For organisms that remain active in one of the last undisturbed and pristine dark environments on the planet-the Arctic Polar Night-the moon, stars and aurora borealis may provide important cues to guide distribution and behaviours, including predator-prey interactions. With a changing climate and increased human activities in the Arctic, such natural light sources will in many places be masked by the much stronger illumination from artificial light. Here we show that normal working-light from a ship may disrupt fish and zooplankton behaviour down to at least 200 m depth across an area of >0.125 km2 around the ship. Both the quantitative and qualitative nature of the disturbance differed between the examined regions. We conclude that biological surveys in the dark from illuminated ships may introduce biases on biological sampling, bioacoustic surveys, and possibly stock assessments of commercial and non-commercial species.


Asunto(s)
Conducta Animal/efectos de la radiación , Peces/fisiología , Luz/efectos adversos , Zooplancton/fisiología , Zooplancton/efectos de la radiación , Animales , Regiones Árticas , Ritmo Circadiano/efectos de la radiación , Clima Frío , Ecosistema , Monitoreo del Ambiente , Fotoperiodo , Navíos
13.
Biomolecules ; 10(3)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121136

RESUMEN

The seasonal dynamic of lipids and their fatty acid constituents in the lipid sac and muscles of pelagic postlarval Leptoclinus maculatus, an ecologically important fish species in the Arctic food nets, in Kongsfjord, Svalbard waters was studied. The determination of the qualitative and quantitative content of the total lipids (TLs), total phospholipids (PLs), triacylglycerols (TAGs), cholesterol (Chol), cholesterol esters (Chol esters) and wax esters was analyzed by TLC, the phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin (SM) were determined by HPLC, and fatty acids of total lipids using GC. The lipid sac is a system of cavities filled with lipids, and it is not directly connected to organs of the digestive system. The wall's inner layer is a multinuclear symplast that has a trophic function. The results provide additional knowledge on the role of lipids in the biochemical and physiological adaptation of fish to specific environments and clarify the relationship between fatty acids and the food specialization of postlarvae. Analysis of the fatty acid (FA) profile of TLs in the muscles and lipid sac of daubed shanny pelagic postlarvae showed it to be tissue- and organ-specific, and tightly associated with seasonal variations of environmental factors (temperature conditions and trophic resources).


Asunto(s)
Ácidos Grasos/análisis , Lípidos/análisis , Perciformes/fisiología , Aclimatación , Animales , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Estaciones del Año , Svalbard
14.
J Plankton Res ; 42(1): 73-86, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32025067

RESUMEN

Apherusa glacialis is a common, sea ice-associated amphipod found throughout the Arctic Ocean and has long been considered permanently associated with the sea ice habitat. However, pelagic occurrences of A. glacialis have also been reported. It was recently suggested that A. glacialis overwinters at depth within the Atlantic-water inflow near Svalbard, to avoid being exported out of the Arctic Ocean through the Fram Strait. This study collated pelagic occurrence records over a 71-year period and found that A. glacialis was consistently found away from its presumed sea ice habitat on a pan-Arctic scale, in different depths and water masses. In the Svalbard region, A. glacialis was found in Atlantic Water both in winter and summer. Additionally, we analyzed A. glacialis size distributions throughout the year, collected mostly from sea ice, in order to elucidate potential life cycle strategies. The majority of young-of-the-year A. glacialis was found in the sea ice habitat during spring, supporting previous findings. Data on size distributions and sex ratios suggest a semelparous lifestyle. A synchronous seasonal vertical migration was not evident, but our data imply a more complex life history than previously assumed. We provide evidence that A. glacialis can no longer be regarded as an autochthonous sympagic species.

15.
Ecol Evol ; 9(19): 11112-11121, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31641459

RESUMEN

Species with a broad and flexible diet may be at an advantage in a rapidly changing environment such as in today's Arctic ecosystems. Polar cod (Boreogadus saida), an abundant and ecologically important circumpolar Arctic fish, is often described as a zooplankton generalist feeder, which suggests that it may cope successfully with changes in prey composition. This description is justified based on the relatively broad diet of polar cod across sites and seasons. In this case study, we used polar cod dietary data from fall and winter and from two distinct environments, dominated either by Arctic or Atlantic water masses in Svalbard. Our results point to the importance of time and space when drawing conclusions on dietary plasticity and degree of specialization. Polar cod diet differed significantly between fall and the winter and between Arctic and Atlantic domains. Polar cod from Arctic domains displayed a strong realized population specialization on Themisto libellula in fall, and the larger dietary niche width observed in the winter was the product of realized individual specialization, with increased feeding on fish prey. Overall, we did not observe a generalized feeding behavior. If dietary niche width is to inform conservation management, we argue it must be recognized that populations from a single species may adopt seasonally contrasting degrees of dietary specialization and that these populations may differ in their vulnerability to climate-induced changes in prey community composition.

16.
Ecotoxicol Environ Saf ; 180: 53-62, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31071648

RESUMEN

The increasing human presence in the Arctic shelf seas, with the expansion of oil and gas industries and maritime shipping, poses a risk for Arctic marine organisms such as the key species polar cod (Boreogadus saida). The impact of dietary crude oil on growth and metabolism of polar cod was investigated in the early spring (March-April) when individuals are expected to be in a vulnerable physiological state with poor energy stores. Adult polar cod were exposed dietarily to three doses of Kobbe crude oil during an eight weeks period and followed by two weeks of depuration. Significant dose-responses in exposure biomarkers (hepatic ethoxyresorufine-O-deethylase [EROD] activity and 1-OH phenanthrene metabolites in bile) indicated that polycyclic aromatic hydrocarbons (PAHs) were bioavailable. Condition indices (i.e. Fulton's condition factor, hepatosomatic index), growth, whole body respiration, and total lipid content in the liver were monitored over the course of the experiment. The majority of females were immature, while a few had spawned during the season and showed low hepatic lipid content during the experiment. In contrast, males were all, except for one immature individual, in a post-spawning stage and had larger hepatic energy stores than females. Most specimens, independent of sex, showed a loss in weight, that was exacerbated by exposure to crude oil and low hepatic liver lipids. Furthermore, females exposed to crude oil showed a significant elevation of oxygen consumption compared to controls, although not dose-dependent. This study highlights the importance of the energy status of individuals for their response to a crude oil exposure.


Asunto(s)
Gadiformes/crecimiento & desarrollo , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Regiones Árticas , Bilis/química , Biomarcadores/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Gadiformes/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Modelos Teóricos , Petróleo/metabolismo , Contaminantes Químicos del Agua/metabolismo
17.
Sci Adv ; 4(1): eaap9887, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29326985

RESUMEN

Light is a major cue for nearly all life on Earth. However, most of our knowledge concerning the importance of light is based on organisms' response to light during daytime, including the dusk and dawn phase. When it is dark, light is most often considered as pollution, with increasing appreciation of its negative ecological effects. Using an Autonomous Surface Vehicle fitted with a hyperspectral irradiance sensor and an acoustic profiler, we detected and quantified the behavior of zooplankton in an unpolluted light environment in the high Arctic polar night and compared the results with that from a light-polluted environment close to our research vessels. First, in environments free of light pollution, the zooplankton community is intimately connected to the ambient light regime and performs synchronized diel vertical migrations in the upper 30 m despite the sun never rising above the horizon. Second, the vast majority of the pelagic community exhibits a strong light-escape response in the presence of artificial light, observed down to 100 m. We conclude that artificial light from traditional sampling platforms affects the zooplankton community to a degree where it is impossible to examine its abundance and natural rhythms within the upper 100 m. This study underscores the need to adjust sampling platforms, particularly in dim-light conditions, to capture relevant physical and biological data for ecological studies. It also highlights a previously unchartered susceptibility to light pollution in a region destined to see significant changes in light climate due to a reduced ice cover and an increased anthropogenic activity.


Asunto(s)
Contaminación Ambiental , Movimiento , Luz Solar , Zooplancton/fisiología , Animales , Regiones Árticas , Modelos Teóricos
18.
Polar Biol ; 41(6): 1197-1216, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30996513

RESUMEN

Under-ice blooms of phytoplankton in the Chukchi Sea have been observed, with strong implications for our understanding of the production regimes in the Arctic Ocean. Using a combination of satellite remote sensing of phytoplankton biomass, in situ observations under sea ice from an autonomous underwater vehicle (AUV), and in vivo photophysiology, we examined the composition, magnitude and origin of a bloom detected beneath the sea ice Northwest of Svalbard (Southern Yermak Plateau) in May 2010. In situ concentration of up to 20 mg chlorophyll a [Chl a] m-3, were dominated by the northern planktonic spring species of diatoms, Thalassiosira nordenskioeldii, T. antarctica var. borealis, Chaetoceros socialis species complex and Fragilariopsis oceanica. These species were also found south of the marginal ice zone (MIZ). Cells in the water column under the sea ice were typically high-light acclimated, with a mean light saturation index (E k ) of 138 µmol photons m-2 s-1 and a ratio between photoprotective carotenoids (PPC) and Chl a (w:w) of 0.2. Remotely sensed data of [Chl a] showed a 32,000 km2 bloom developing south of the MIZ. In effect, our data suggest that the observed under-ice bloom was in fact a bloom developed in open waters south of the ice edge, and that a combination of northward-flowing water masses and southward drifting sea ice effectively positioned the bloom under the sea ice. This have implications for our general understanding of under-ice blooms, suggesting that their origin and connection with open water may be different in different regions of the Arctic.

19.
Evol Appl ; 10(1): 39-55, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28035234

RESUMEN

Climate changes in the Arctic are predicted to alter distributions of marine species. However, such changes are difficult to quantify because information on present species distribution and the genetic variation within species is lacking or poorly examined. Blue mussels, Mytilus spp., are ecosystem engineers in the coastal zone globally. To improve knowledge of distribution and genetic structure of the Mytilus edulis complex in the Arctic, we analyzed 81 SNPs in 534 Mytilus spp. individuals sampled at 13 sites to provide baseline data for distribution and genetic variation of Mytilus mussels in the European Arctic. Mytilus edulis was the most abundant species found with a clear genetic split between populations in Greenland and the Eastern Atlantic. Surprisingly, analyses revealed the presence of Mytilus trossulus in high Arctic NW Greenland (77°N) and Mytilus galloprovincialis or their hybrids in SW Greenland, Svalbard, and the Pechora Sea. Furthermore, a high degree of hybridization and introgression between species was observed. Our study highlights the importance of distinguishing between congener species, which can display local adaptation and suggests that information on dispersal routes and barriers is essential for accurate predictions of regional susceptibility to range expansions or invasions of boreal species in the Arctic.

20.
Sci Rep ; 6: 36374, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27805028

RESUMEN

Bioluminescence commonly influences pelagic trophic interactions at mesopelagic depths. Here we characterize a vertical gradient in structure of a generally low species diversity bioluminescent community at shallower epipelagic depths during the polar night period in a high Arctic fjord with in situ bathyphotometric sampling. Bioluminescence potential of the community increased with depth to a peak at 80 m. Community composition changed over this range, with an ecotone at 20-40 m where a dinoflagellate-dominated community transitioned to dominance by the copepod Metridia longa. Coincident at this depth was bioluminescence exceeding atmospheric light in the ambient pelagic photon budget, which we term the bioluminescence compensation depth. Collectively, we show a winter bioluminescent community in the high Arctic with vertical structure linked to attenuation of atmospheric light, which has the potential to influence pelagic ecology during the light-limited polar night.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...