Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Struct Biol ; 86: 102813, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38598982

RESUMEN

Oxidative stress leads to the production of oxidized phospholipids (oxPLs) that modulate the biophysical properties of phospholipid monolayers and bilayers. As many immune cells are responsible for surveilling cells and tissues for the presence of oxPLs, oxPL-dependent mechanisms have been suggested as targets for treating chronic kidney disease, atherosclerosis, diabetes, and cancer metastasis. This review details recent experimental and computational studies that characterize oxPLs' behaviors in various monolayers and bilayers. These studies investigate how the tail length and polar functional groups of OxPLs impact membrane properties, how oxidized membranes can be stabilized, and how membrane integrity is generally affected by oxidized lipids. In addition, for oxPL-containing membrane modeling and simulation, CHARMM-GUI Membrane Builder has been extended to support a variety of oxPLs, accelerating the simulation system building process for these biologically relevant lipid bilayers.


Asunto(s)
Membrana Dobles de Lípidos , Oxidación-Reducción , Fosfolípidos , Fosfolípidos/metabolismo , Fosfolípidos/química , Membrana Dobles de Lípidos/metabolismo , Membrana Dobles de Lípidos/química , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Simulación de Dinámica Molecular , Modelos Moleculares
2.
ACS Omega ; 8(32): 29314-29323, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37599986

RESUMEN

Microdomains in lipid bilayer membranes are routinely imaged using organic fluorophores that preferentially partition into one of the lipid phases, resulting in fluorescence contrast. Here, we show that membrane microdomains in giant unilamellar vesicles (GUVs) can be visualized with europium luminescence using a complex of europium III (Eu3+) and tetracycline (EuTc). EuTc is unlike typical organic lipid probes in that it is a coordination complex with a unique excitation/emission wavelength combination (396/617 nm), a very large Stokes shift (221 nm), and a very narrow emission bandwidth (8 nm). The probe preferentially interacts with liquid disordered domains in GUVs, which results in intensity contrast across the surface of phase-separated GUVs. Interestingly, EuTc also alters GM1 ganglioside partitioning. GM1 typically partitions into liquid ordered domains, but after labeling phase-separated GUVs with EuTc, cholera toxin B-subunit (CTxB), which binds GM1, labels liquid disordered domains. We also demonstrate that EuTc, but not free Eu3+ or Tc, significantly reduces lipid diffusion coefficients. Finally, we show that EuTc can be used to label cellular membranes similar to a traditional membrane probe. EuTc may find utility as a membrane imaging probe where its large Stokes shift and sharp emission band would enable multicolor imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...