Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Hum Biol ; 51(1): 2321128, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38509686

RESUMEN

BACKGROUND: Six Homo naledi early juveniles were recovered from U.W. 101 (Dinaledi Chamber), U.W. 102 (Lesedi Chamber), and U.W. 110 in the Rising Star cave system. AIM: This paper develops the information for the H. naledi early juvenile life stage, as defined by a combination of deciduous and permanent dentition, and the eruption of the first permanent molar. SUBJECTS AND METHODS: The growing number of young individuals recovered from the Rising Star cave system allows us to gain a better understanding of their variation, or lack thereof, and provides a basis to estimate broad ranges for age at death of the individuals. The individuals are identified and described through craniodental remains and spatial associations. RESULTS AND CONCLUSION: Our results show that the teeth are remarkably consistent across the localities in their metric and non-metric traits, and our analyses refine previous estimations on dental eruptions with the first permanent molar erupting first in the sequence among permanent teeth.


Asunto(s)
Hominidae , Diente , Animales , Humanos , Sudáfrica , Fósiles , Fenotipo
2.
J Hum Evol ; 187: 103490, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38266614

RESUMEN

A frequent source of debate in paleoanthropology concerns the taxonomic unity of fossil assemblages, with many hominin samples exhibiting elevated levels of variation that can be interpreted as indicating the presence of multiple species. By contrast, the large assemblage of hominin fossils from the Rising Star cave system, assigned to Homo naledi, exhibits a remarkably low degree of variation for most skeletal elements. Many factors can contribute to low sample variation, including genetic drift, strong natural selection, biased sex ratios, and sampling of closely related individuals. In this study, we tested for potential sex-biased sampling in the Rising Star dental sample. We compared coefficients of variation for the H. naledi teeth to those for eight extant hominoid samples. We used a resampling procedure that generated samples from the extant taxa that matched the sample size of the fossil sample for each possible Rising Star dental sex ratio. We found that variation at four H. naledi tooth positions-I2, M1, P4, M1-is so low that the possibility that one sex is represented by few or no individuals in the sample cannot be excluded. Additional evidence is needed to corroborate this inference, such as ancient DNA or enamel proteome data, and our study design does not address other potential factors that would account for low sample variation. Nevertheless, our results highlight the importance of considering the taphonomic history of a hominin assemblage and suggest that sex-biased sampling is a plausible explanation for the low level of phenotypic variation found in some aspects of the current H. naledi assemblage.


Asunto(s)
Hominidae , Diente , Humanos , Animales , Fósiles , Flujo Genético , Diente Molar , Diente Primario
3.
J Hum Evol ; 180: 103372, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37229947

RESUMEN

More than 150 hominin teeth, dated to ∼330-241 thousand years ago, were recovered during the 2013-2015 excavations of the Dinaledi Chamber of the Rising Star cave system, South Africa. These fossils comprise the first large single-site sample of hominin teeth from the Middle Pleistocene of Africa. Though scattered remains attributable to Homo sapiens, or their possible lineal ancestors, are known from older and younger sites across the continent, the distinctive morphological feature set of the Dinaledi teeth supports the recognition of a novel hominin species, Homo naledi. This material provides evidence of African Homo lineage diversity that lasts until at least the Middle Pleistocene. Here, a catalog, anatomical descriptions, and details of preservation and taphonomic alteration are provided for the Dinaledi teeth. Where possible, provisional associations among teeth are also proposed. To facilitate future research, we also provide access to a catalog of surface files of the Rising Star jaws and teeth.


Asunto(s)
Hominidae , Diente , Humanos , Animales , Sudáfrica , Hominidae/anatomía & histología , Fósiles , Cuevas , Evolución Biológica
4.
Homo ; 74(1): 55-60, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-36988108

RESUMEN

In 1996, Grün and coworkers provided an ESR age determination for a hominin molar from Florisbad, South Africa, at 259 ± 35 ka. The most anatomically informative hominin specimen from Florisbad is a fragmentary craniofacial specimen, attributed by many to early Homo sapiens, which has been assumed to derive from the same individual as this tooth. Since 1996, evidence about the evolutionary context for the later Middle Pleistocene and its associated hominins in Africa had markedly changed. If the Florisbad date is accurate and if the molar is associated with the craniofacial specimen, this evidence may suggest that Homo naledi coexisted in time and geography with H. sapiens in southern Africa. Thus, the accuracy for all dates needs critical investigation. This study examines the published record of excavation and subsequent analyses for the Florisbad material. We find that the contemporary records raise doubt about the contemporaneity of the tooth and calvaria. The site's complex stratigraphy and the details about the tooth's discovery also pose challenges for the previous ESR age estimate. Because the fragmentary cranial specimen has value for morphological comparisons, developing additional means of understanding its geological age is necessary. The current data do not demonstrate the presence of H. sapiens in southern Africa at ~260 ka.


Asunto(s)
Hominidae , Animales , Humanos , Hominidae/anatomía & histología , Fósiles , Evolución Biológica , Cráneo/anatomía & histología , Sudáfrica
5.
Elife ; 102021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34812141

RESUMEN

Adaptations of the lower back to bipedalism are frequently discussed but infrequently demonstrated in early fossil hominins. Newly discovered lumbar vertebrae contribute to a near-complete lower back of Malapa Hominin 2 (MH2), offering additional insights into posture and locomotion in Australopithecus sediba. We show that MH2 possessed a lower back consistent with lumbar lordosis and other adaptations to bipedalism, including an increase in the width of intervertebral articular facets from the upper to lower lumbar column ('pyramidal configuration'). These results contrast with some recent work on lordosis in fossil hominins, where MH2 was argued to demonstrate no appreciable lordosis ('hypolordosis') similar to Neandertals. Our three-dimensional geometric morphometric (3D GM) analyses show that MH2's nearly complete middle lumbar vertebra is human-like in overall shape but its vertebral body is somewhat intermediate in shape between modern humans and great apes. Additionally, it bears long, cranially and ventrally oriented costal (transverse) processes, implying powerful trunk musculature. We interpret this combination of features to indicate that A. sediba used its lower back in both bipedal and arboreal positional behaviors, as previously suggested based on multiple lines of evidence from other parts of the skeleton and reconstructed paleobiology of A. sediba.


One of the defining features of humans is our ability to walk comfortably on two legs. To achieve this, our skeletons have evolved certain physical characteristics. For example, the lower part of the human spine has a forward curve that supports an upright posture; whereas the lower backs of chimpanzees and other apes ­ which walk around on four limbs and spend much of their time in trees ­ lack this curvature. Studying the fossilized back bones of ancient human remains can help us to understand how we evolved these features, and whether our ancestors moved in a similar way. Australopithecus sediba was a close-relative of modern humans that lived about two million years ago. In 2008, fossils from an adult female were discovered at a cave site in South Africa called Malapa. However, the fossils of the lower back region were incomplete, so it was unclear whether the female ­ referred to as Malapa Hominin 2 (MH2) ­ had a forward-curving spine and other adaptations needed to walk on two legs. Here, Williams et al. report the discovery of new A. sediba fossils from Malapa. The new fossils are mainly bones from the lower back, and they fit together with the previously discovered MH2 fossils, providing a nearly complete lower spine. Analysis of the fossils suggested that MH2 would have had an upright posture and comfortably walked on two legs, and the curvature of their lower back was similar to modern females. However, other aspects of the bones' shape suggest that as well as walking, A. sediba probably spent a significant amount of time climbing in trees. The findings of Williams et al. provide new insights in to our evolutionary history, and ultimately, our place in the natural world around us. Our lower back is prone to injury and pain associated with posture, pregnancy and exercise (or lack thereof). Therefore, understanding how the lower back evolved may help us to learn how to prevent injuries and maintain a healthy back.


Asunto(s)
Dorso/anatomía & histología , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Animales , Femenino , Hominidae/fisiología , Locomoción , Postura
6.
Sci Rep ; 10(1): 13196, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764597

RESUMEN

Homo naledi displays a combination of features across the skeleton not found in any other hominin taxon, which has hindered attempts to determine its placement within the hominin clade. Using geometric morphometrics, we assess the morphology of the mandibular premolars of the species at the enamel-dentine junction (EDJ). Comparing with specimens of Paranthropus, Australopithecus and Homo (n = 97), we find that the H. naledi premolars from the Dinaledi chamber consistently display a suite of traits (e.g., tall crown, well-developed P3 and P4 metaconid, strongly developed P3 mesial marginal ridge, and a P3 > P4 size relationship) that distinguish them from known hominin groups. Premolars from a second locality, the Lesedi Chamber, are consistent with this morphology. We also find that two specimens from South Africa, SK 96 (usually attributed to Paranthropus) and Stw 80 (Homo sp.), show similarities to the species, and we discuss a potential evolutionary link between H. naledi and hominins from Sterkfontein and Swartkrans.


Asunto(s)
Diente Premolar/anatomía & histología , Evolución Biológica , Hominidae , Mandíbula , Animales , Fósiles , Sudáfrica
7.
Nat Ecol Evol ; 4(7): 911-918, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32424278

RESUMEN

The human lineage is marked by a transition in hand use, from locomotion towards increasingly dexterous manipulation, concomitant with bipedalism. The forceful precision grips used by modern humans probably evolved in the context of tool manufacture and use, but when and how many times hominin hands became principally manipulative remains unresolved. We analyse metacarpal trabecular and cortical bone, which provide insight into behaviour during an individual's life, to demonstrate previously unrecognized diversity in hominin hand use. The metacarpals of the palm in Australopithecus sediba have trabecular morphology most like orangutans and consistent with locomotor power-grasping with the fingers, while that of the thumb is consistent with human-like manipulation. This internal morphology is the first record of behaviour consistent with a hominin that used its hand for both arboreal locomotion and human-like manipulation. This hand use is distinct from other fossil hominins in this study, including A. afarensis and A. africanus.


Asunto(s)
Hominidae , Animales , Evolución Biológica , Fósiles , Humanos , Locomoción
8.
PLoS One ; 15(4): e0230440, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32236122

RESUMEN

Immature remains are critical for understanding maturational processes in hominin species as well as for interpreting changes in ontogenetic development in hominin evolution. The study of these subjects is hindered by the fact that associated juvenile remains are extremely rare in the hominin fossil record. Here we describe an assemblage of immature remains of Homo naledi recovered from the 2013-2014 excavation season. From this assemblage, we attribute 16 postcranial elements and a partial mandible with some dentition to a single juvenile Homo naledi individual. The find includes postcranial elements never before discovered as immature elements in the sub-equatorial early hominin fossil record, and contributes new data to the field of hominin ontogeny.


Asunto(s)
Huesos/anatomía & histología , Fósiles/anatomía & histología , Mandíbula/anatomía & histología , Animales , Evolución Biológica , Hominidae , Sudáfrica
9.
Am J Phys Anthropol ; 170(4): 482-483, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31580474

Asunto(s)
Antropología , Nombres
10.
J Hum Evol ; 133: 61-77, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31358184

RESUMEN

The abundant femoral assemblage of Homo naledi found in the Dinaledi Chamber provides a unique opportunity to test hypotheses regarding the taxonomy, locomotion, and loading patterns of this species. Here we describe neck and shaft cross-sectional structure of all the femoral fossils recovered in the Dinaledi Chamber and compare them to a broad sample of fossil hominins, recent humans, and extant apes. Cross-sectional geometric (CSG) properties from the femoral neck (base of neck and midneck) and diaphysis (subtrochanteric region and midshaft) were obtained through CT scans for H. naledi and through CT scans or from the literature for the comparative sample. The comparison of CSG properties of H. naledi and the comparative samples shows that H. naledi femoral neck is quite derived with low superoinferior cortical thickness ratio and high relative cortical area. The neck appears superoinferiorly elongated because of two bony pilasters on its superior surface. Homo naledi femoral shaft shows a relatively thick cortex compared to the other hominins. The subtrochanteric region of the diaphysis is mediolaterally elongated resembling early hominins while the midshaft is anteroposteriorly elongated, indicating high mobility levels. In term of diaphyseal robusticity, the H. naledi femur is more gracile that other hominins and most apes. Homo naledi shows a unique combination of characteristics in its femur that undoubtedly indicate a species committed to terrestrial bipedalism but with a unique loading pattern of the femur possibly consequence of the unique postcranial anatomy of the species.


Asunto(s)
Fémur/anatomía & histología , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Animales , Densidad Ósea , Diáfisis/anatomía & histología , Diáfisis/fisiología , Fémur/fisiología , Cuello Femoral/anatomía & histología , Cuello Femoral/fisiología , Hominidae/fisiología , Sudáfrica
11.
J Hum Evol ; 132: 1-14, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31203841

RESUMEN

Excavations in the Lesedi Chamber (U.W. 102) of the Rising Star cave system from 2013 to 2015 resulted in the recovery of 131 fossils representing at least three individuals attributed to Homo naledi. Hominin fossils were recovered from three collection areas within the Lesedi Chamber. A partial skull with near complete dentition (LES1) and an associated partial skeleton were recovered from Area 102a, while craniodental remains from two other individuals were recovered from Areas 102b and 102c. Here we present detailed anatomical descriptions and metrical comparisons of the Lesedi Chamber H. naledi craniodental remains that preserve diagnostic morphology. The LES1 skull is a presumed male that is slightly larger in size, and shows greater development of ectocranial structures compared to other H. naledi specimens from the Dinaledi Chamber of the Rising Star cave system. Otherwise the Lesedi fossils are notably similar to the Dinaledi fossils in shape and morphology. The Lesedi fossils also preserve the delicate nasal and lacrimal bones that are otherwise unrecorded in the Dinaledi sample. Limited morphological differences between the Dinaledi and Lesedi Chamber hominin samples provides support for the hypothesis that these two assemblages share a close phyletic relationship.


Asunto(s)
Fósiles/anatomía & histología , Hominidae/anatomía & histología , Cráneo/anatomía & histología , Animales , Cuevas , Glicoproteínas de Membrana , Receptores de Interleucina-1 , Sudáfrica
12.
Am J Phys Anthropol ; 170(1): 5-23, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31228254

RESUMEN

OBJECTIVES: The femoral remains recovered from the Lesedi Chamber are among the most complete South African fossil hominin femora discovered to date and offer new and valuable insights into the anatomy and variation of the bone in Homo naledi. While the femur is one of the best represented postcranial elements in the H. naledi assemblage from the Dinaledi Chamber, the fragmentary and commingled nature of the Dinaledi femoral remains has impeded the assessment of this element in its complete state. MATERIALS AND METHODS: Here we analyze and provide descriptions of three new relatively well-preserved femoral specimens of H. naledi from the Lesedi Chamber: U.W. 102a-001, U.W. 102a-003, and U.W. 102a-004. These femora are quantitatively and qualitatively compared to multiple extinct hominin femoral specimens, extant hominid taxa, and, where possible, each other. RESULTS: The Lesedi femora are morphologically similar to the Dinaledi femora for all overlapping regions, with differences limited to few traits of presently unknown significance. The Lesedi distal femur and mid-diaphysis preserve anatomy previously unidentified or unconfirmed in the species, including an anteroposteriorly expanded midshaft and anteriorly expanded patellar surface. The hypothesis that the Lesedi femoral sample may represent two individuals is supported. DISCUSSION: The Lesedi femora increase the range of variation of femoral morphology in H. naledi. Newly described features of the diaphysis and distal femur are either taxonomically uninformative or Homo-like. Overall, these three new femora are consistent with previous functional interpretations of the H. naledi lower limb as belonging to a species adapted for long distance walking and, possibly, running.


Asunto(s)
Fémur , Fósiles , Hominidae , Animales , Antropología Física , Evolución Biológica , Fémur/anatomía & histología , Fémur/fisiología , Hominidae/anatomía & histología , Hominidae/fisiología , Humanos , Sudáfrica , Caminata/fisiología
14.
J Hum Evol ; 122: 146-155, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30001870

RESUMEN

This study describes three incudes recovered from the Dinaledi Chamber in the Rising Star cave system in South Africa. All three bones were recovered during sieving of excavated sediments and likely represent three Homo naledi individuals. Morphologically and metrically, the Dinaledi ossicles resemble those of chimpanzees and Paranthropus robustus more than they do later members of the genus Homo, and fall outside of the modern human range of variation in several dimensions. Despite this, when overall size is considered, the functional lengths in H. naledi and P. robustus are very similar to those predicted for a human with a similar-sized incus. In this sense, both taxa seem to show a relatively elongated functional length, distinguishing them from chimpanzees. The functional length in H. naledi is slightly longer in absolute terms than in P. robustus, suggesting H. naledi may already show a slight increase in functional length compared with early hominins. While H. naledi lacks the more open angle between the long and short processes found in modern humans, considered a derived feature within the genus Homo, the value in H. naledi is similar to that predicted for a hominoid with a similar-sized incus. Principal components analysis of size-standardized variables shows H. naledi falling outside of the recent human range of variation, but within the confidence ellipse for gorillas. Phylogenetic polarity is complicated by the absence of incus data from early members of the genus Homo, but the generally primitive nature of the H. naledi incudes is consistent with other primitive features of the species, such as the very small cranial capacity. These ossicles add significantly to the understanding of incus variation in hominins and provide important new data on the morphology and taxonomic affinities of H. naledi.


Asunto(s)
Fósiles/anatomía & histología , Hominidae/anatomía & histología , Yunque/anatomía & histología , Animales , Sudáfrica
15.
J Hum Evol ; 122: 108-123, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29887210

RESUMEN

A new species of Homo, Homo naledi, was described in 2015 based on the hominin skeletal remains from the Dinaledi Chamber of the Rising Star cave system, South Africa. Subsequent craniodental comparative analyses, both phenetic and cladistic, served to support its taxonomic distinctiveness. Here we provide a new quantitative analysis, where up to 78 nonmetric crown and root traits of the permanent dentition were compared among samples of H. naledi (including remains from the recently discovered Lesedi Chamber) and eight other species from Africa: Australopithecus afarensis, Australopithecus africanus, Paranthropus boisei, Paranthropus robustus, Homo habilis, Homo erectus, Middle Pleistocene Homo sp., and Pleistocene and Holocene Homo sapiens. By using the mean measure of divergence distance statistic, phenetic affinities were calculated among samples to evaluate interspecific relatedness. The objective was to compare the results with those previously obtained, to assess further the taxonomic validity of the Rising Star hominin species. In accordance with earlier findings, H. naledi appears most similar dentally to the other African Homo samples. However, the former species is characterized by its retention and full expression of features relating to the main cusps, as well as the root numbers, with a near absence of accessory traits-including many that, based on various cladistic studies, are plesiomorphic in both extinct and extant African hominins. As such, the present findings provide additional support for the taxonomic validity of H. naledi as a distinct species of Homo.


Asunto(s)
Evolución Biológica , Restos Mortales/anatomía & histología , Fósiles/anatomía & histología , Hominidae/anatomía & histología , Diente/anatomía & histología , Animales , Hominidae/clasificación , Fenotipo , Sudáfrica
16.
J Hum Evol ; 121: 40-54, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29709292

RESUMEN

Perikymata, incremental growth lines visible on tooth enamel surfaces, differ in their distribution and number among hominin species, although with overlapping patterns. This study asks: (1) How does the distribution of perikymata along the lateral enamel surface of Homo naledi anterior teeth compare to that of other hominins? (2) When both perikymata distribution and number are analyzed together, how distinct is H. naledi from other hominins? A total of 19 permanent anterior teeth (incisors and canines) of H. naledi were compared, by tooth type, to permanent anterior teeth of other hominins: Australopithecus afarensis, Australopithecus africanus, Paranthropus robustus, Paranthropus boisei, Homo ergaster/Homo erectus, other early Homo, Neandertals, and modern humans, with varying sample sizes. Repeated measures analyses of the percentage of perikymata per decile of reconstructed crown height yielded several statistically significant differences between H. naledi and other hominins. Canonical variates analysis of percentage of perikymata in the cervical half of the crown together with perikymata number revealed that, in 8 of 19 cases, H. naledi teeth were significantly unlikely to be classified as other hominins, while exhibiting least difference from modern humans (especially southern Africans). In a cross-validated analysis, 68% of the H. naledi teeth were classified as such, while 32% were classified as modern human (most often southern African). Of 313 comparative teeth use for this analysis, only 1.9% were classified as H. naledi. What tends to differentiate H. naledi anterior tooth crowns from those of most other hominins, including some modern humans, is strongly skewed perikymata distributions combined with perikymata numbers that fall in the middle to lower ranges of hominin values. H. naledi therefore tends toward a particular combination of these features that is less often seen in other hominins. Implications of these data for the growth and development of H. naledi anterior teeth are considered.


Asunto(s)
Esmalte Dental/crecimiento & desarrollo , Hominidae/crecimiento & desarrollo , Animales , Fósiles
17.
Proc Natl Acad Sci U S A ; 115(22): 5738-5743, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760068

RESUMEN

Hominin cranial remains from the Dinaledi Chamber, South Africa, represent multiple individuals of the species Homo naledi This species exhibits a small endocranial volume comparable to Australopithecus, combined with several aspects of external cranial anatomy similar to larger-brained species of Homo such as Homo habilis and Homo erectus Here, we describe the endocast anatomy of this recently discovered species. Despite the small size of the H. naledi endocasts, they share several aspects of structure in common with other species of Homo, not found in other hominins or great apes, notably in the organization of the inferior frontal and lateral orbital gyri. The presence of such structural innovations in a small-brained hominin may have relevance to behavioral evolution within the genus Homo.


Asunto(s)
Encéfalo/anatomía & histología , Fósiles , Cráneo/anatomía & histología , Animales , Antropología Física , Evolución Biológica , Hominidae , Sudáfrica
18.
Int J Paleopathol ; 21: 47-55, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29778414

RESUMEN

The reported incidence of neoplasia in the extinct hominin record is rare. We describe here the first palaeopathological analysis of an osteogenic lesion in the extinct hominin Homo naledi from Dinaledi Cave (Rising Star), South Africa. The lesion presented as an irregular bony growth, found on the right lingual surface of the body of the adult mandible U.W. 101-1142. The growth was macroscopically evaluated and internally imaged using micro-focus x-ray computed tomography (µCT). A detailed description and differential diagnosis were undertaken using gross and micromorphology, and we conclude that the most probable diagnosis is peripheral osteoma - a benign osteogenic neoplasia. These tumours are cryptic in clinical expression, though they may present localised discomfort and swelling. It has been suggested that muscle traction may play a role in the development and expression of these tumours. The impact of this lesion on the individual affected is unknown. This study adds to the growing corpus of palaeopathological data from the South African fossil record, which suggests that the incidence of neoplastic disease in deep prehistory was more prevalent than traditionally accepted. The study also highlights the utility of micro-computed tomography in assisting accurate diagnoses of ancient pathologies.


Asunto(s)
Enfermedades del Simio Antropoideo/historia , Enfermedades del Simio Antropoideo/patología , Fósiles/patología , Neoplasias Mandibulares/veterinaria , Osteoma/veterinaria , Animales , Enfermedades del Simio Antropoideo/diagnóstico por imagen , Fósiles/diagnóstico por imagen , Historia Antigua , Hominidae , Microtomografía por Rayos X
19.
Am J Phys Anthropol ; 166(1): 228-235, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29399788

RESUMEN

OBJECTIVES: A recent study of dental chipping suggested that Homo naledi teeth were exposed to "acute trauma" on a regular basis during life, presumably from the consumption of grit-laden foods. This follows debate concerning the etiology of dental chips in South African hominin teeth that dates back more than half a century. Some have argued that antemortem chips result from consumption of hard foods, such as nuts and seeds or bone, whereas others have claimed that exogenous grit on roots and tubers are responsible. Here we examine the dental microwear textures of H. naledi, both to reconstruct aspects of diet of these hominins and to assess the possibility that hard foods (gritty or otherwise) are the culprits for the unusually high antemortem chip incidence reported. METHODS: We made high-resolution replicas of original molars and found that ten individuals preserve antemortem wear. These were scanned by white-light scanning confocal profilometry and analyzed using scale-sensitive fractal analysis. Resulting data were compared with those published for other fossil hominins and extant non-human primates. RESULTS: Our results indicate that H. naledi had complex microwear textures dominated by large, deep pits. The only known fossil hominin with higher average texture complexity is Paranthropus robustus, and the closest extant primates in a comparative baseline series appear to be the hard-object feeder, Cercocebus atys, and the eurytopic generalist, Papio ursinus. CONCLUSIONS: This study suggests that H. naledi likely consumed hard and abrasive foods, such as nuts or tubers, at least on occasion, and that these might well be responsible for the pattern of chipping observed on their teeth.


Asunto(s)
Dieta/historia , Conducta Alimentaria/fisiología , Hominidae/fisiología , Desgaste de los Dientes/patología , Diente/patología , Animales , Antropología Física , Historia Antigua
20.
J Hum Evol ; 125: 122-136, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29169681

RESUMEN

In the hominin fossil record, pelvic remains are sparse and are difficult to attribute taxonomically when they are not directly associated with craniodental material. Here we describe the pelvic remains from the Dinaledi Chamber in the Rising Star cave system, Cradle of Humankind, South Africa, which has produced hominin fossils of a new species, Homo naledi. Though this species has been attributed to Homo based on cranial and lower limb morphology, the morphology of some of the fragmentary pelvic remains recovered align more closely with specimens attributed to the species Australopithecus afarensis and Australopithecus africanus than they do with those of most (but not all) known species of the genus Homo. As with A. afarensis and A. africanus, H. naledi appears to have had marked lateral iliac flare and either a weakly developed or non-existent acetabulocristal buttress or a distinct, albeit weakly developed, acetabulospinous buttress. At the same time, H. naledi has robust superior pubic and ischiopubic rami and a short ischium with a narrow tuberoacetabular sulcus, similar to those found in modern humans. The fragmentary nature of the Dinaledi pelvic assemblage makes the attribution of sex and developmental age to individual specimens difficult, which in turn diminishes our ability to identify the number of individuals represented in the assemblage. At present, we can only confidently say that the pelvic fossils from Rising Star represent at least four individuals based on the presence of four overlapping right ischial fossils (whereas a minimum of 15 individuals can be identified from the Dinaledi dental assemblage). A primitive, early Australopithecus-like false pelvis combined with a derived Homo-like true pelvis is morphologically consistent with evidence from the lower ribcage and proximal femur of H. naledi. The overall similarity of H. naledi ilia to those of australopiths supports the inference, drawn from the observation of primitive pelvic morphology in the extinct species Homo floresiensis, that there is substantial variation in pelvic form within the genus Homo. In the light of these findings, we urge caution in making taxonomic attributions-even at the genus level-of isolated fossil ossa coxae.


Asunto(s)
Fósiles/anatomía & histología , Hominidae/anatomía & histología , Pelvis/anatomía & histología , Animales , Cuevas , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...