Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Front Pediatr ; 11: 1130013, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36994431

RESUMEN

Preterm birth is defined as delivery at <37 weeks of gestational age (GA) and exposes 15 million infants worldwide to serious early life diseases. Lowering the age of viability to 22 weeks GA entailed provision of intensive care to a greater number of extremely premature infants. Moreover, improved survival, especially at extremes of prematurity, comes with a rising incidence of early life diseases with short- and long-term sequelae. The transition from fetal to neonatal circulation is a substantial and complex physiologic adaptation, which normally happens rapidly and in an orderly sequence. Maternal chorioamnionitis or fetal growth restriction (FGR) are two common causes of preterm birth that are associated with impaired circulatory transition. Among many cytokines contributing to the pathogenesis of chorioamnionitis-related perinatal inflammatory diseases, the potent pro-inflammatory interleukin (IL)-1 has been shown to play a central role. The effects of utero-placental insufficiency-related FGR and in-utero hypoxia may also be mediated, in part, via the inflammatory cascade. In preclinical studies, blocking such inflammation, early and effectively, holds great promise for improving the transition of circulation. In this mini-review, we outline the mechanistic pathways leading to abnormalities in transitional circulation in chorioamnionitis and FGR. In addition, we explore the therapeutic potential of targeting IL-1 and its influence on perinatal transition in the context of chorioamnionitis and FGR.

2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769133

RESUMEN

Preterm birth is a major contributor to neonatal morbidity and mortality. Complications of prematurity such as bronchopulmonary dysplasia (BPD, affecting the lung), pulmonary hypertension associated with BPD (BPD-PH, heart), white matter injury (WMI, brain), retinopathy of prematurity (ROP, eyes), necrotizing enterocolitis (NEC, gut) and sepsis are among the major causes of long-term morbidity in infants born prematurely. Though the origins are multifactorial, inflammation and in particular the imbalance of pro- and anti-inflammatory mediators is now recognized as a key driver of the pathophysiology underlying these illnesses. Here, we review the involvement of the interleukin (IL)-1 family in perinatal inflammation and its clinical implications, with a focus on the potential of these cytokines as therapeutic targets for the development of safe and effective treatments for early life inflammatory diseases.


Asunto(s)
Displasia Broncopulmonar , Enfermedades del Recién Nacido , Nacimiento Prematuro , Retinopatía de la Prematuridad , Lactante , Embarazo , Femenino , Recién Nacido , Humanos , Interleucina-1 , Recien Nacido Prematuro , Antiinflamatorios/uso terapéutico , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/tratamiento farmacológico , Enfermedades del Recién Nacido/tratamiento farmacológico , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Retinopatía de la Prematuridad/tratamiento farmacológico
3.
Front Immunol ; 13: 1022104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389766

RESUMEN

Background: Bronchopulmonary dysplasia (BPD), its complication pulmonary hypertension (BPD-PH) and preterm brain and gut injury lead to significant morbidity and mortality in infants born extremely prematurely. There is extensive evidence that the pro-inflammatory cytokine interleukin 1 (IL-1) plays a key role in the pathophysiology of these illnesses. Two decades of clinical use in paediatric and adult medicine have established an excellent safety and efficacy record for IL-1 blockade with IL-1 receptor antagonist (IL-1Ra, medication name anakinra). Building on robust pre-clinical evidence, the Anakinra Pilot trial aims to demonstrate safety and feasibility of administering anakinra to preterm infants, and to establish pharmacokinetics in this population. Its ultimate goal is to facilitate large studies that will test whether anakinra can ameliorate early-life inflammation, thus alleviating multiple complications of prematurity. Methods and analysis: Anakinra Pilot is an investigator-initiated, single arm, safety and feasibility dose-escalation trial in extremely preterm infants born between 24 weeks 0 days (240) and 276 weeks of gestational age (GA). Enrolled infants will receive anakinra intravenously over the first 21 days after birth, starting in the first 24 h after birth. In the first phase, dosing is 1 mg/kg every 48 h, and dosage will increase to 1.5 mg/kg every 24 h in the second phase. Initial anakinra dosing was determined through population pharmacokinetic model simulations. During the study, there will be a interim analysis to confirm predictions before undertaking dose assessment. Anakinra therapy will be considered safe if the frequency of adverse outcomes/events does not exceed that expected in infants born at 240-276 weeks GA. Clinical Trial Registration: https://clinicaltrials.gov/, identifier NCT05280340.


Asunto(s)
Displasia Broncopulmonar , Proteína Antagonista del Receptor de Interleucina 1 , Adulto , Niño , Humanos , Lactante , Recién Nacido , Displasia Broncopulmonar/tratamiento farmacológico , Estudios de Factibilidad , Recien Nacido Extremadamente Prematuro , Proteína Antagonista del Receptor de Interleucina 1/efectos adversos , Interleucina-1 , Receptores de Interleucina-1
4.
Sci Transl Med ; 14(639): eaaz8454, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35385341

RESUMEN

Postnatal maturation of the immune system is poorly understood, as is its impact on illnesses afflicting term or preterm infants, such as bronchopulmonary dysplasia (BPD) and BPD-associated pulmonary hypertension. These are both cardiopulmonary inflammatory diseases that cause substantial mortality and morbidity with high treatment costs. Here, we characterized blood samples collected from 51 preterm infants longitudinally at five time points, 20 healthy term infants at birth and age 3 to 16 weeks, and 5 healthy adults. We observed strong associations between type 2 immune polarization in circulating CD3+CD4+ T cells and cardiopulmonary illness, with odds ratios up to 24. Maternal magnesium sulfate therapy, delayed hepatitis B vaccination, and increasing fetal, but not maternal, chorioamnionitis severity were associated with attenuated type 2 polarization. Blocking type 2 mediators such as interleukin-4 (IL-4), IL-5, IL-13, or signal transducer and activator of transcription 6 (STAT6) in murine neonatal cardiopulmonary disease in vivo prevented changes in cell type composition, increases in IL-1ß and IL-13, and losses of pulmonary capillaries, but not gains in larger vessels. Thereby, type 2 blockade ameliorated lung inflammation, protected alveolar and vascular integrity, and confirmed the pathological impact of type 2 cytokines and STAT6. In-depth flow cytometry and single-cell transcriptomics of mouse lungs further revealed complex associations between immune polarization and cardiopulmonary disease. Thus, this work advances knowledge on developmental immunology and its impact on early life disease and identifies multiple therapeutic approaches that may relieve inflammation-driven suffering in the youngest patients.


Asunto(s)
Displasia Broncopulmonar , Interleucina-13 , Animales , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/prevención & control , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Inflamación/complicaciones , Pulmón/patología , Ratones , Embarazo
5.
Bio Protoc ; 12(21)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36816013

RESUMEN

Bronchopulmonary dysplasia (BPD) and pulmonary hypertension associated with BPD (BPD-PH) are of multifactorial origin and share common risk factors. Most murine models of BPD expose newborn pups to only one of these risk factors-more commonly postnatal hyperoxia-thereby mimicking the vital increased fraction of inspired oxygen (FiO2) that preterm infants in neonatal intensive care units often require. To improve representation of the multifactorial origins of BPD and BPD-PH, we established a double hit model, combining antenatal systemic inflammation followed by postnatal hyperoxia. On embryonic day 14, pups are exposed to systemic maternal inflammation via a single intraperitoneal injection of 150 µg/kg of lipopolysaccharide to the dam. Within 24 h after birth, pups and dams are randomized and exposed to gas with either an FiO2 of 0.21 (room air) or 0.65 (hyperoxia 65%). In our BPD and BPD-PH double hit model, we can obtain multiple readouts from individual pups that include echocardiography, lung histology and immunohistochemistry, ex vivo X-ray micro computed tomography, and pulmonary and plasmatic immunity by RNA, protein, or flow cytometry. This protocol was validated in: Sci Transl Med (2022), DOI: 10.1126/scitranslmed.aaz8454 Graphical abstract Figure 1. Murine double hit model of cardiopulmonary disease. On embryonic day (E)14, pups are exposed to systemic maternal inflammation via a single intraperitoneal injection of 150 µg/kg lipopolysaccharide to the dam. Within 24 h after birth, pups and dams are randomized to be exposed to gas with either a fraction of inspired oxygen (FiO 2 ) of 0.21 (air; 21% O 2 ) or 0.65 (hyperoxia; 65% O 2 ) for a maximum of 28 days. According to the murine stage of lung development ( Schittny, 2017 ), experimental endpoints include postnatal day (D)3, D5, D14, D28, and D60.

6.
J Biocommun ; 45(1): E13, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36407919

RESUMEN

The impact of the Vienna Protocol transcends the world of Jewish law and provides important ethical considerations for modern medicine. This article provides a series of examples demonstrating how Canadian medical history intersects with the Vienna Protocol, and why historical insight remains relevant. Investigations into this exploitation include this author's own inquiry and attempt to repatriate Canadian indigenous skulls (a gift from William Osler to Rudolf Virchow), the glaring maltreatment of Aboriginal children in Canadian nutrition experiments, and the maltreatment of Canadian AIDS patients in the 1980s.

7.
J Microbiol Methods ; 180: 106091, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137355

RESUMEN

In June 2017, the Pennsylvania Department of Health (PADOH) was notified of multiple norovirus outbreaks associated with 179 ill individuals who attended separate events held at an outdoor venue and campground over a month period. Epidemiologic investigations were unable to identify a single exposure route and therefore unable to determine whether there was a persistent contamination source to target for exposure mitigation. Norovirus was detected in a fresh recreational water designated swimming area and a drinking water well. A hydrogeological site evaluation suggested a nearby septic leach field as a potential contamination source via ground water infiltration. Geological characterization revealed a steep dip of the bedrock beneath the septic leach field toward the well, providing a viral transport pathway in a geologic medium not previously documented as high risk for viral ground water contamination. The human-associated microbial source tracking (MST) genetic marker, HF183, was used as a microbial tracer to demonstrate the hydrogeological connection between the malfunctioning septic system, drinking water well, and recreational water area. Based on environmental investigation findings, venue management and local public health officials implemented a series of outbreak prevention strategies including discontinuing the use of the contaminated well, issuing a permit for a new drinking water well, increasing portable toilet and handwashing station availability, and promoting proper hand hygiene. Despite the outbreaks at the venue and evidence of ground water contamination impacting nearby recreational water and the drinking water well, no new norovirus cases were reported during a large event one week after implementing prevention practices. This investigation highlights a new application for human-associated MST methods to trace hydrological connections between multiple fecal pollutant exposure routes in an outbreak scenario. In turn, pollutant source information can be used to develop effective intervention practices to mitigate exposure and prevent future outbreaks associated with human fecal contaminated waters.


Asunto(s)
Brotes de Enfermedades , Norovirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Microbiología del Agua , Enfermedades Transmitidas por el Agua/virología , Tipificación de Bacteriófagos , Infecciones por Caliciviridae/epidemiología , Monitoreo del Ambiente/métodos , Heces , Agua Dulce/microbiología , Agua Dulce/virología , Genotipo , Agua Subterránea/virología , Humanos , Técnicas Microbiológicas , Norovirus/genética , Pennsylvania/epidemiología , Contaminación del Agua , Enfermedades Transmitidas por el Agua/microbiología
8.
IEEE Trans Vis Comput Graph ; 27(2): 1644-1654, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33074814

RESUMEN

Matrix visualizations are a useful tool to provide a general overview of a graph's structure. For multivariate graphs, a remaining challenge is to cope with the attributes that are associated with nodes and edges. Addressing this challenge, we propose responsive matrix cells as a focus+context approach for embedding additional interactive views into a matrix. Responsive matrix cells are local zoomable regions of interest that provide auxiliary data exploration and editing facilities for multivariate graphs. They behave responsively by adapting their visual contents to the cell location, the available display space, and the user task. Responsive matrix cells enable users to reveal details about the graph, compare node and edge attributes, and edit data values directly in a matrix without resorting to external views or tools. We report the general design considerations for responsive matrix cells covering the visual and interactive means necessary to support a seamless data exploration and editing. Responsive matrix cells have been implemented in a web-based prototype based on which we demonstrate the utility of our approach. We describe a walk-through for the use case of analyzing a graph of soccer players and report on insights from a preliminary user feedback session.

9.
Nat Commun ; 11(1): 5794, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188181

RESUMEN

Necrotizing enterocolitis (NEC) is a severe, currently untreatable intestinal disease that predominantly affects preterm infants and is driven by poorly characterized inflammatory pathways. Here, human and murine NEC intestines exhibit an unexpected predominance of type 3/TH17 polarization. In murine NEC, pro-inflammatory type 3 NKp46-RORγt+Tbet+ innate lymphoid cells (ILC3) are 5-fold increased, whereas ILC1 and protective NKp46+RORγt+ ILC3 are obliterated. Both species exhibit dysregulation of intestinal TLR repertoires, with TLR4 and TLR8 increased, but TLR5-7 and TLR9-12 reduced. Transgenic IL-37 effectively protects mice from intestinal injury and mortality, whilst exogenous IL-37 is only modestly efficacious. Mechanistically, IL-37 favorably modulates immune homeostasis, TLR repertoires and microbial diversity. Moreover, IL-37 and its receptor IL-1R8 are reduced in human NEC epithelia, and IL-37 is lower in blood monocytes from infants with NEC and/or lower birthweight. Our results on NEC pathomechanisms thus implicate type 3 cytokines, TLRs and IL-37 as potential targets for novel NEC therapies.


Asunto(s)
Enterocolitis Necrotizante/tratamiento farmacológico , Enterocolitis Necrotizante/inmunología , Inmunidad Adaptativa , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Enterocolitis Necrotizante/sangre , Enterocolitis Necrotizante/patología , Homeostasis , Humanos , Inmunidad Innata , Recién Nacido , Mediadores de Inflamación/metabolismo , Interleucina-1 , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Toll-Like/metabolismo
11.
Cells ; 9(1)2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31936823

RESUMEN

Interleukin (IL)-37 is a member of the IL-1 family of cytokines. Although its broad anti-inflammatory properties are well described, the effects of IL-37 on inflammasome function remain poorly understood. Performing gene expression analyses, ASC oligomerization/speck assays and caspase-1 assays in bone marrow-derived macrophages (BMDM), and employing an in vivo endotoxemia model, we studied how IL-37 affects the expression and maturation of IL-1ß and IL-18, inflammasome activation, and pyroptosis in detail. IL-37 inhibited IL-1ß production by NLRP3 and AIM2 inflammasomes, and IL-18 production by the NLRP3 inflammasome. This inhibition was partially attributable to effects on gene expression: whereas IL-37 did not affect lipopolysaccharide (LPS)-induced mRNA expression of Il18 or inflammasome components, IL-37-transgenic BMDM displayed an up to 83% inhibition of baseline and LPS-stimulated Il1b compared to their wild-type counterparts. Importantly, we observed that IL-37 suppresses nigericin- and silica-induced ASC oligomerization/speck formation (a step in inflammasome activation and subsequent caspase-1 activation), and pyroptosis (-50%). In mice subjected to endotoxemia, IL-37 inhibited plasma IL-1ß (-78% compared to wild-type animals) and IL-18 (-61%). Thus, our study adds suppression of inflammasome activity to the portfolio of anti-inflammatory pathways employed by IL-37, highlighting this cytokine as a potential tool for treating inflammasome-driven diseases.


Asunto(s)
Inflamasomas/metabolismo , Interleucina-1/metabolismo , Interleucinas/metabolismo , Animales , Células Cultivadas , Interleucina-1/análisis , Interleucinas/análisis , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
12.
Front Immunol ; 10: 1480, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354700

RESUMEN

Pulmonary hypertension secondary to bronchopulmonary dysplasia (BPD-PH) represents a major complication of BPD in extremely preterm infants for which there are currently no safe and effective interventions. The abundance of interleukin-1 (IL-1) is strongly correlated with the severity and long-term outcome of BPD infants and we have previously shown that IL-1 receptor antagonist (IL-1Ra) protects against murine BPD; therefore, we hypothesized that IL-1Ra may also be effective against BPD-PH. We employed daily injections of IL-1Ra in a murine model in which BPD/BPD-PH was induced by antenatal LPS and postnatal hyperoxia of 65% O2. Pups reared in hyperoxia for 28 days exhibited a BPD-PH-like disease accompanied by significant changes in pulmonary vascular morphology: micro-CT revealed an 84% reduction in small vessels (4-5 µm diameter) compared to room air controls; this change was prevented by IL-1Ra. Pulmonary vascular resistance, assessed at day 28 of life by echocardiography using the inversely-related surrogate marker time-to-peak-velocity/right ventricular ejection time (TPV/RVET), increased in hyperoxic mice (0.27 compared to 0.32 in air controls), and fell significantly with daily IL-1Ra treatment (0.31). Importantly, in vivo cine-angiography revealed that this protection afforded by IL-1Ra treatment for 28 days is maintained at day 60 of life. Despite an increased abundance of mediators of pulmonary angiogenesis in day 5 lung lysates, namely vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1), no difference was detected in ex vivo pulmonary vascular reactivity between air and hyperoxia mice as measured in precision cut lung slices, or by immunohistochemistry in alpha-smooth muscle actin (α-SMA) and endothelin receptor type-A (ETA) at day 28. Further, on day 28 of life we observed cardiac fibrosis by Sirius Red staining, which was accompanied by an increase in mRNA expression of galectin-3 and CCL2 (chemokine (C-C motif) ligand 2) in whole hearts of hyperoxic pups, which improved with IL-1Ra. In summary, our findings suggest that daily administration of the anti-inflammatory IL-1Ra prevents the increase in pulmonary vascular resistance and the pulmonary dysangiogenesis of murine BPD-PH, thus pointing to IL-1Ra as a promising candidate for the treatment of both BPD and BPD-PH.


Asunto(s)
Antiinflamatorios/farmacología , Displasia Broncopulmonar/prevención & control , Hipertensión Pulmonar/prevención & control , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Resistencia Vascular/efectos de los fármacos , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/patología , Modelos Animales de Enfermedad , Endotelina-1/metabolismo , Hiperoxia , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Int J Hyg Environ Health ; 221(4): 704-711, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29567375

RESUMEN

Spore reduction can be used as a surrogate measure of Cryptosporidium natural filtration efficiency. Estimates of log10 (log) reduction were derived from spore measurements in paired surface and well water samples in Casper Wyoming and Kearney Nebraska. We found that these data were suitable for testing the hypothesis (H0) that the average reduction at each site was 2 log or less, using a one-sided Student's t-test. After establishing data quality objectives for the test (expressed as tolerable Type I and Type II error rates), we evaluated the test's performance as a function of the (a) true log reduction, (b) number of paired samples assayed and (c) variance of observed log reductions. We found that 36 paired spore samples are sufficient to achieve the objectives over a wide range of variance, including the variances observed in the two data sets. We also explored the feasibility of using smaller numbers of paired spore samples to supplement bioparticle counts for screening purposes in alluvial aquifers, to differentiate wells with large volume surface water induced recharge from wells with negligible surface water induced recharge. With key assumptions, we propose a normal statistical test of the same hypothesis (H0), but with different performance objectives. As few as six paired spore samples appear adequate as a screening metric to supplement bioparticle counts to differentiate wells in alluvial aquifers with large volume surface water induced recharge. For the case when all available information (including failure to reject H0 based on the limited paired spore data) leads to the conclusion that wells have large surface water induced recharge, we recommend further evaluation using additional paired biweekly spore samples.


Asunto(s)
Cryptosporidium , Monitoreo del Ambiente/métodos , Esporas Bacterianas/aislamiento & purificación , Contaminantes del Agua/aislamiento & purificación , Abastecimiento de Agua , Microbiología del Agua
14.
Sleep ; 40(10)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28977669

RESUMEN

Study objectives: In principle, if metabolic rate were to fall during sleep in a patient with obstructive sleep apnea (OSA), ventilatory requirements could be met without increased respiratory effort thereby favoring stable breathing. Indeed, most patients achieve periods of stable flow-limited breathing without respiratory events for periods during the night for reasons that are unclear. Thus, we tested the hypothesis that in patients with OSA, periods of stable breathing occur when metabolic rate (VO2) declines. Methods: Twelve OSA patients (apnea-hypopnea index >15 events/h) completed overnight polysomnography including measurements of VO2 (using ventilation and intranasal PO2) and respiratory effort (esophageal pressure). Results: Contrary to our hypothesis, VO2 did not differ between stable and unstable breathing periods in non-REM stage 2 (208 ± 20 vs. 213 ± 18 mL/min), despite elevated respiratory effort during stable breathing (26 ± 2 versus 23 ± 2 cmH2O, p = .03). However, VO2 was lowered during deeper sleep (244 to 179 mL/min from non-REM stages 1 to 3, p = .04) in conjunction with more stable breathing. Further analysis revealed that airflow obstruction curtailed metabolism in both stable and unstable periods, since CPAP increased VO2 by 14% in both cases (p = .02, .03, respectively). Patients whose VO2 fell most during sleep avoided an increase in PCO2 and respiratory effort. Conclusions: OSA patients typically convert from unstable to stable breathing without lowering metabolic rate. During sleep, OSA patients labor with increased respiratory effort but fail to satisfy metabolic demand even in the absence of overt respiratory events.


Asunto(s)
Metabolismo Basal/fisiología , Presión de las Vías Aéreas Positiva Contínua , Consumo de Oxígeno/fisiología , Respiración , Apnea Obstructiva del Sueño/fisiopatología , Sueño/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polisomnografía , Frecuencia Respiratoria/fisiología
15.
J Reprod Immunol ; 124: 21-29, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29035757

RESUMEN

Bronchopulmonary dysplasia (BPD) and BPD-associated pulmonary hypertension (BPD-PH) are chronic inflammatory cardiopulmonary diseases with devastating short- and long-term consequences for infants born prematurely. The immature lungs of preterm infants are ill-prepared to achieve sufficient gas exchange, thus usually necessitating immediate commencement of respiratory support and oxygen supplementation. These therapies are life-saving, but they exacerbate the tissue damage that is inevitably inflicted on a preterm lung forced to perform gas exchange. Together, air-breathing and necessary therapeutic interventions disrupt normal lung development by aggravating pulmonary inflammation and vascular remodelling, thus frequently precipitating BPD and PH via an incompletely understood pathogenic cascade. BPD and BPD-PH share common risk factors, such as low gestational age at birth, fetal growth restriction and perinatal maternal inflammation; however, these risk factors are not unique to BPD or BPD-PH. Occurring in 17-24% of BPD patients, BPD-PH substantially worsens the morbidity and mortality attributable to BPD alone, thus darkening their outlook; for example, BPD-PH entails a mortality of up to 50%. The absence of a safe and effective therapy for BPD and BPD-PH renders neonatal cardiopulmonary disease an area of urgent unmet medical need. Besides the need to develop new therapeutic strategies, a major challenge for clinicians is the lack of a reliable method for identifying babies at risk of developing BPD and BPD-PH. In addition to discussing current knowledge on pathophysiology, diagnosis and treatment of BPD-PH, we highlight emerging biomarkers that could enable clinicians to predict disease-risk and also optimise treatment of BPD-PH in our tiniest patients.


Asunto(s)
Displasia Broncopulmonar/epidemiología , Displasia Broncopulmonar/patología , Hipertensión Pulmonar/epidemiología , Enfermedades del Recién Nacido/epidemiología , Recien Nacido Prematuro/fisiología , Nacimiento Prematuro/epidemiología , Animales , Desarrollo Fetal , Humanos , Oxigenoterapia Hiperbárica , Hipertensión Pulmonar/patología , Lactante , Recién Nacido , Enfermedades del Recién Nacido/patología , Inflamación , Nacimiento Prematuro/patología , Respiración , Remodelación Vascular
16.
Respirology ; 22(8): 1662-1669, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28730724

RESUMEN

BACKGROUND AND OBJECTIVE: Obstructive sleep apnoea (OSA) is typically worse in the supine versus lateral sleeping position. One potential factor driving this observation is a decrease in lung volume in the supine position which is expected by theory to increase a key OSA pathogenic factor: dynamic ventilatory control instability (i.e. loop gain). We aimed to quantify dynamic loop gain in OSA patients in the lateral and supine positions, and to explore the relationship between change in dynamic loop gain and change in lung volume with position. METHODS: Data from 20 patients enrolled in previous studies on the effect of body position on OSA pathogenesis were retrospectively analysed. Dynamic loop gain was calculated from routinely collected polysomnographic signals using a previously validated mathematical model. Lung volumes were measured in the awake state with a nitrogen washout technique. RESULTS: Dynamic loop gain was significantly higher in the supine than in the lateral position (0.77 ± 0.15 vs 0.68 ± 0.14, P = 0.012). Supine functional residual capacity (FRC) was significantly lower than lateral FRC (81.0 ± 15.4% vs 87.3 ± 18.4% of the seated FRC, P = 0.021). The reduced FRC we observed on moving to the supine position was predicted by theory to increase loop gain by 10.2 (0.6, 17.1)%, a value similar to the observed increase of 8.4 (-1.5, 31.0)%. CONCLUSION: Dynamic loop gain increased by a small but statistically significant amount when moving from the lateral to supine position and this may, in part, contribute to the worsening of OSA in the supine sleeping position.


Asunto(s)
Pulmón/fisiopatología , Apnea Obstructiva del Sueño/fisiopatología , Sueño/fisiología , Adulto , Femenino , Capacidad Residual Funcional/fisiología , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Postura , Pruebas de Función Respiratoria/métodos , Estudios Retrospectivos , Estadística como Asunto , Posición Supina/fisiología
17.
Int J Hyg Environ Health ; 220(4): 736-743, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28336442

RESUMEN

Public water systems (PWSs) in the United States generate total coliform (TC) and Escherichia coli (EC) monitoring data, as required by the Total Coliform Rule (TCR). We analyzed data generated in 2011 by approximately 38,000 small (serving fewer than 4101 individuals) undisinfected public water systems (PWSs). We used statistical modeling to characterize a distribution of TC detection probabilities for each of nine groupings of PWSs based on system type (community, non-transient non-community, and transient non-community) and population served (less than 101, 101-1000 and 1001-4100 people). We found that among PWS types sampled in 2011, on average, undisinfected transient PWSs test positive for TC 4.3% of the time as compared with 3% for undisinfected non-transient PWSs and 2.5% for undisinfected community PWSs. Within each type of PWS, the smaller systems have higher median TC detection than the larger systems. All TC-positive samples were assayed for EC. Among TC-positive samples from small undisinfected PWSs, EC is detected in about 5% of samples, regardless of PWS type or size. We evaluated the upper tail of the TC detection probability distributions and found that significant percentages of some system types have high TC detection probabilities. For example, assuming the systems providing data are nationally-representative, then 5.0% of the ∼50,000 small undisinfected transient PWSs in the U.S. have TC detection probabilities of 20% or more. Communities with such high TC detection probabilities may have elevated risk of acute gastrointestinal (AGI) illness - perhaps as great or greater than the attributable risk to drinking water (6-22%) calculated for 14 Wisconsin community PWSs with much lower TC detection probabilities (about 2.3%, Borchardt et al., 2012).


Asunto(s)
Agua Potable/análisis , Enterobacteriaceae/aislamiento & purificación , Agua Subterránea/análisis , Contaminantes del Agua/análisis , Abastecimiento de Agua , Monitoreo del Ambiente , Estados Unidos
18.
J Cell Mol Med ; 21(6): 1128-1138, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27957795

RESUMEN

Bronchopulmonary dysplasia (BPD) is a severe lung disease of preterm infants, which is characterized by fewer, enlarged alveoli and increased inflammation. BPD has grave consequences for affected infants, but no effective and safe therapy exists. We previously showed that prophylactic treatment with interleukin-1 receptor antagonist (IL-1Ra) prevents murine BPD induced by perinatal inflammation and hyperoxia. Here, we used the same BPD model to assess whether an alternative anti-inflammatory agent, protein C (PC), is as effective as IL-1Ra against BPD. We also tested whether delayed administration or a higher dose of IL-1Ra affects its ability to ameliorate BPD and investigated aspects of drug safety. Pups were reared in room air (21% O2 ) or hyperoxia (65% or 85% O2 ) and received daily injections with vehicle, 1200 IU/kg PC, 10 mg/kg IL-1Ra (early or late onset) or 100 mg/kg IL-1Ra. After 3 or 28 days, lung and brain histology were assessed and pulmonary cytokines were analysed using ELISA and cytokine arrays. We found that PC only moderately reduced the severe impact of BPD on lung structure (e.g. 18% increased alveolar number by PC versus 34% by IL-1Ra); however, PC significantly reduced IL-1ß, IL-1Ra, IL-6 and macrophage inflammatory protein (MIP)-2 by up to 89%. IL-1Ra at 10 mg/kg prevented BPD more effectively than 100 mg/kg IL-1Ra, but only if treatment commenced at day 1 of life. We conclude that prophylactic low-dose IL-1Ra and PC ameliorate BPD and have potential as the first remedy for one of the most devastating diseases preterm babies face.


Asunto(s)
Displasia Broncopulmonar/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Proteína Antagonista del Receptor de Interleucina 1/administración & dosificación , Proteína C/administración & dosificación , Animales , Animales Recién Nacidos , Antiinflamatorios/administración & dosificación , Antiinflamatorios/efectos adversos , Displasia Broncopulmonar/complicaciones , Displasia Broncopulmonar/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Lactante , Recién Nacido , Inflamación/complicaciones , Inflamación/patología , Proteína Antagonista del Receptor de Interleucina 1/efectos adversos , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Embarazo , Proteína C/efectos adversos , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología
20.
Eur Respir J ; 48(5): 1351-1359, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27587554

RESUMEN

Cheyne-Stokes respiration (CSR) foretells deleterious outcomes in patients with heart failure. Currently, the size of therapeutic intervention is not guided by the patient's underlying pathophysiology. In theory, the intervention needed to resolve CSR, as a control system instability (loop gain >1), can be predicted knowing the baseline loop gain and how much it falls with therapy.In 12 patients with heart failure, we administered an inspiratory carbon dioxide fraction of 1-3% during CSR (n=95 interventions) as a means to reduce loop gain. We estimated the loop gain on therapy (LGtherapy), using the baseline loop gain (using hyperpnoea length/cycle length) and its expected reduction (18% per 1% inspired carbon dioxide), and tested the specific hypothesis that LGtherapy predicts CSR persistence (LGtherapy >1) versus resolution (LGtherapy <1).As predicted, when LGtherapy >1.0, CSR continued during therapy in 23 out of 25 (92%) trials. A borderline loop gain zone (0.8

Asunto(s)
Respiración de Cheyne-Stokes/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Terapia por Inhalación de Oxígeno/métodos , Respiración , Anciano , Dióxido de Carbono , Humanos , Masculino , Persona de Mediana Edad , Polisomnografía , Sueño , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...