Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 209: 111326, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38701595

RESUMEN

Thorium-227 was separated from its progeny and standardized for activity by the triple-to-double coincidence ratio (TDCR) method of liquid scintillation counting. Confirmatory liquid scintillation-based measurements were made using efficiency tracing with 3H and live-timed anticoincidence counting (LTAC). The separation time and the efficiency of the separation were confirmed by gamma-ray spectrometry. Calibrations for reentrant pressurized ionization chambers, including commercial radionuclide calibrators, and a well-type NaI(Tl) detector are discussed.

2.
Appl Radiat Isot ; 203: 111108, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000166

RESUMEN

Gadolinium-153 was standardized for activity by live-timed anticoincidence counting and an ampoule was submitted to the international reference system (SIR). Absolute emission intensities for the main γ rays were determined with calibrated high-purity germanium (HPGe) and lithium-drifted silicon (Si(Li)) detectors. A revised decay scheme is indicated, with no probability of direct electron capture to the 153Eu ground state. Triple-to-double coincidence ratio (TDCR) efficiency curves indicate that the revised decay scheme is consistent with experiment. Half-life measurements agree with a previous NIST determination and show no sensitivity to chemical environment.

3.
Appl Radiat Isot ; 202: 111068, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866226

RESUMEN

The Vinten 671 ionization chamber (VIC) was modelled using Monte Carlo (MC) programs EGSnrc, Penelope, and TOPAS. Several national measurement institutes have VICs with well-characterized response relationships and have measured calibration coefficients for many radionuclides. Twelve radionuclides with various decay emissions were assessed as well as 14 monoenergetic photon sources and 10 monoenergetic electron sources. Calibration coefficients were calculated based on the energy deposited in the simulated VIC nitrogen gas volume and compared to experimental values from the literature.

4.
Appl Radiat Isot ; 201: 111025, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717417

RESUMEN

A manual microliter gravimetric dispensing technique is demonstrated using a micropipettor modified for use with removeable microcapillaries. Liquid scintillation sources were prepared from a well-characterized 241Am reference solution, providing a radiometric check of dispensed masses. Further experiments confirmed controlled dispensing of drops onto gold foils with losses ≤0.34(4) % of the total drop activity. A detailed measurement equation for the weighing technique, including the corrections for evaporation, is presented with a full accounting of associated uncertainties.

5.
Appl Radiat Isot ; 200: 110945, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37515859

RESUMEN

The Bureau International des Poids et Mesures (BIPM) is developing a new transfer instrument to extend its centralized services for assessing the international equivalence of radioactive standards to new radionuclides. A liquid scintillation counter using the triple/double coincidence ratio method is being studied and tested in the CCRI(II)-P1.Co-60 pilot study. The pilot study, involving 13 participating laboratories with primary calibration capabilities, validated the approach against the original international reference system based on ionization chambers, which has been in operation since 1976. The results are in agreement and an accuracy suitable for purpose, below 5×10-4, is achieved. The pilot study also reveals an issue when impurities emitting low-energy electrons are present in the standard solution, which have a different impact on liquid scintillation counting compared to other primary measurement methods.

7.
Appl Radiat Isot ; 190: 110473, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36201936

RESUMEN

An activity standard for 212Pb in equilibrium with its progeny was realized, based on triple-to-double coincidence ratio (TDCR) liquid scintillation (LS) counting. A Monte Carlo-based approach to estimating uncertainties due to nuclear decay data (branching ratios, beta endpoint energies, γ-ray energies, and conversion coefficients for 212Pb and 208Tl) led to combined standard uncertainties ≤ 0.20 %. Confirmatory primary measurements were made by LS efficiency tracing with tritium and 4παß(LS)-γ(NaI(Tl)) anticoincidence counting. The standard is discussed in relation to current approaches to 212Pb activity calibration. In particular, potential biases encountered when using inappropriate radionuclide calibrator settings are discussed.


Asunto(s)
Plomo , Conteo por Cintilación , Conteo por Cintilación/métodos , Radioisótopos , Tritio/análisis , Estándares de Referencia
8.
Appl Radiat Isot ; 184: 110161, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35248797

RESUMEN

Interest in targeted cancer therapy with alpha-emitting radionuclides is growing. To evaluate emerging radiotherapeutic agents requires precise activity measurements for consistent dose-response relationships and patient-specific dosimetry. National metrology institutes around the world have reported on the development and comparison of activity standards for medically important alpha emitters. This review describes the relevant methods and models underpinning these standards, the generation of new nuclear decay data, and the impacts on preclinical and clinical activity assays using radionuclide calibrators and γ-ray spectrometry.


Asunto(s)
Radioisótopos , Radiometría , Calibración , Humanos , Radioisótopos/uso terapéutico , Radiometría/métodos , Estándares de Referencia , Espectrometría gamma
9.
Appl Radiat Isot ; 170: 109572, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33461017

RESUMEN

The national metrology institutes for the United Kingdom (UK) and the United States of America (USA) have compared activity standards for 224Ra, an α-particle emitter of interest as the basis for therapeutic radiopharmaceuticals. Solutions of 224RaCl2 were assayed by absolute methods, including digital coincidence counting and triple-to-double coincidence ratio liquid scintillation counting. Ionization chamber and high-purity germanium (HPGe) γ-ray spectrometry calibrations were compared; further, a solution was shipped between laboratories for a direct comparison by HPGe spectrometry. New determinations of the absolute emission intensity for the 241 keV γ ray (Iγ = 4.011(16) per 100 disintegrations of 224Ra) and of the 224Ra half-life (T1/2 = 3.6313(14) d) are presented and discussed in the context of previous measurements and evaluations.

10.
J Res Natl Inst Stand Technol ; 126: 126048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38469443

RESUMEN

We present a new paradigm for the primary standardization of radionuclide activity per mass of solution (Bq/g). Two key enabling capabilities are 4π decay-energy spectrometry using chip-scale sub-Kelvin microcalorimeters and direct realization of mass by gravimetric inkjet dispensing using an electrostatic force balance. In contrast to traditional traceability, which typically relies on chemical separation of single-radionuclide samples, 4π integral counting, and additional spectrometry methods to verify purity, the system described here has both 4π counting efficiency and spectroscopic resolution sufficient to identify multiple radionuclides in the same sample at once. This enables primary standardization of activity concentrations of mixed-radionuclide samples. A major benefit of this capability, beyond metrology, is in assay of environmental and forensics samples, for which the quantification of multiplenuclide samples can be achieved where presently inhibited by interferences. This can be achieved without the need for chemical separations or efficiency tracers, thereby vastly reducing time, radioactive waste, and resulting measurement uncertainty.

11.
Appl Radiat Isot ; 164: 109265, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32763787

RESUMEN

A suspension of 224Ra adsorbed onto CaCO3 microparticles shows promise for α-therapy of intracavitary micro-metastatic diseases. To facilitate accurate activity administrations, geometry-specific calibration factors for commercially available reentrant ionization chambers (ICs) have been developed for 224RaCl2 solutions and 224Ra adsorbed onto CaCO3 microparticles in suspension in ampoules, vials, and syringes. Ampoules and vials give IC responses consistent with each other to <1%. Microparticles attenuation leads to a ≈1% to ≈2.5% reduction in response in the geometries studied.

12.
Appl Radiat Isot ; 155: 108933, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31654881

RESUMEN

A standard for activity of 224Ra in secular equilibrium with its progeny has been developed, based on triple-to-double coincidence ratio (TDCR) liquid scintillation (LS) counting. The standard was confirmed by efficiency tracing and 4παß(LS)-γ(NaI(Tl)) anticoincidence counting, as well as by 4πγ ionization chamber and NaI(Tl) measurements. Secondary standard ionization chambers were calibrated with an expanded uncertainty of 0.62% (k = 2). Calibration settings were also determined for a 5 mL flame-sealed ampoule on several commercial reentrant ionization chambers (dose calibrators).

13.
Nucl Med Commun ; 39(6): 500-504, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29596133

RESUMEN

BACKGROUND: Most clinical measurements of radioactivity, whether for therapeutic or imaging nuclides, rely on commercial re-entrant ionization chambers ('dose calibrators'). The National Institute of Standards and Technology (NIST) maintains a battery of representative calibrators and works to link calibration settings ('dial settings') to primary radioactivity standards. Here, we provide a summary of NIST-determined dial settings for 22 radionuclides. METHODS: We collected previously published dial settings and determined some new ones using either the calibration curve method or the dialing-in approach. RESULTS: The dial settings with their uncertainties are collected in a comprehensive table. CONCLUSION: In general, current manufacturer-provided calibration settings give activities that agree with National Institute of Standards and Technology standards to within a few percent.


Asunto(s)
Medicina Nuclear/métodos , Dosis de Radiación , Radioisótopos , Calibración
14.
Appl Radiat Isot ; 134: 280-285, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28974327

RESUMEN

The radionuclide copper-64 is a promising candidate for nuclear medicine, but its complex decay creates challenges in the primary standardization of its activity. Monte Carlo simulations of live-timed anticoincidence (LTAC) counting of 64Cu were used to calculate corrections to extrapolation intercepts, resulting in improved activity determinations. A small correction (-0.33%) to the linear extrapolation of LTAC data acquired with a γ-gate over the 1346keV gamma peak was determined. We discuss the physical origin of the correction. We also use experimental data to demonstrate a Monte Carlo scaling that allows for inclusion of data acquired with a γ-gate set over the annihilation photon peak(s).

15.
Appl Radiat Isot ; 134: 416-420, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29100721

RESUMEN

In nuclear medicine, 68Ge is used to generate 68Ga for imaging by positron emission tomography (PET) and sealed sources containing 68Ge/68Ga in equilibrium have been adopted as long-lived calibration surrogates for the more common PET nuclide, 18F. We prepared several 68Ge sources for measurement on a NaI(Tl) well counter and a pressurized ionization chamber, following their decay for 110 weeks (≈ 2.8 half-lives). We determined values for the 68Ge half-life of T1/2 = 271.14(15) d and T1/2 = 271.07(12) d from the NaI(Tl) well counter and ionization chamber measurements, respectively. These are in accord with the current Decay Data Evaluation Project (DDEP) recommended value of T1/2 = 270.95(26) d and we discuss the expected impact of our measurements on this value.

16.
Artículo en Inglés | MEDLINE | ID: mdl-34877100

RESUMEN

A new natural uranium solution standard has been produced and will be disseminated by the National Institute of Standards and Technology (NIST) as Standard Reference Material 4321d. The standard is certified for the massic activities of 234U, 235U, and 238U in solution, and it is based on isotopic mass data for the metallic Certified Reference Material (CRM) 112-A (originally issued as SRM 960) that was obtained from THE U.S. Department of Energy, New Brunswick Laboratory. The metallic CRM was chemically cleaned, dissolved, and gravimetrically diluted to prepare a master solution, which was quantitatively dispensed into 5 mL aliquots that were contained within flame-sealed glass ampoules for each SRM unit. Homogeneity among SRM units, verifying solution homogeneity, was substantiated by photonic-emission integral counting with a NaI(Tl) well counter. Confirmatory measurements were performed by liquid scintillation counting for the total massic activity, and by isotope dilution α spectrometry for the 234U and 238U massic activities.

17.
Artículo en Inglés | MEDLINE | ID: mdl-30983652

RESUMEN

Liquid scintillation cocktails loaded with neutron capture agents such as 6Li are used in both neutron and neutrino detectors. For detectors designed to operate over extended timespans, long-term stability can be a concern. We demonstrate the identification of thermodynamically unstable emulsions as distinct from stable microemulsions, driving phase separation with centrifugation. Phase separation was identified by monitoring the quench indicating parameter, measured using an external Compton source. Samples were also characterized by dynamic light scattering, where in an extreme case, phase separation could be observed in real time. We describe a stable cocktail with 0.01 mass fraction added Li, a relatively high Li concentration.

18.
Appl Radiat Isot ; 109: 402-404, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26717794

RESUMEN

Source self-attenuation for solutions of (57)Co of varying density and carrier concentration was measured in nine re-entrant ionization chambers maintained at NIST. The magnitude of the attenuation must be investigated to determine whether a correction is necessary in the determination of the activity of a source that differs in composition from the source used to calibrate the ionization chamber. At our institute, corrections are currently made in the measurement of (144)Ce, (109)Cd, (67)Ga, (195)Au, (166)Ho, (177)Lu, and (153)Sm. This work presents the methods used as recently applied to (57)Co. A range of corrections up to 1% were calculated for dilute to concentrated HCl at routinely used carrier concentrations.

19.
Appl Radiat Isot ; 109: 30-35, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26585641

RESUMEN

An informal bilateral comparison of (14)C liquid scintillation (LS) counting at the National Research Council of Canada (NRC) and the National Institute of Standards and Technology (NIST) has been completed. Two solutions, one containing (14)C-labeled sodium benzoate and one containing (14)C-labeled n-hexadecane, were measured at both laboratories. Despite observed LS cocktail instabilities, the two laboratories achieved accord in their standardizations of both solutions. At the conclusion of the comparison, the beta spectrum used for efficiency calculations was identified as inadequate and the data were reanalyzed with different inputs, improving accord.

20.
Appl Radiat Isot ; 109: 264-269, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26585642

RESUMEN

The Compton spectrum quenching technique is used to monitor the effect of ethyl alcohol (EtOH) additions on phase boundaries in two systems. In toluenic solutions of the nonionic surfactant, Triton X-100, EtOH shifts the boundary separating the first clear phase from the first turbid phase to higher water:surfactant ratios. In a commonly used scintillant, Ultima Gold AB, the critical micelle concentration is not shifted. The molecular interactions behind the observations and implications for liquid scintillation counting are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...