Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharm Dev Technol ; 27(10): 1009-1015, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36331240

RESUMEN

The poor solubility of a large number of active pharmaceutical ingredients (APIs) is a major challenge in pharmaceutical research. Therefore, the extrusion of amorphous solid dispersions (ASDs) is one promising approach to enhance the dissolution rate by molecularly dissolving the API in an amorphous carrier polymer. During ASD extrusion, crucial parameters as the dissolution of the API in the carrier polymer need to be monitored. Within this study, a small scale twin screw extruder was coupled with special ColVisTec UV-vis probes that are characterized by their small dimensions. This setup enables a systematic formulation design and optimization based on in-line monitoring of drug dissolution using small material quantities. In fact, sample quantities of about 5 mg were evaluated for each measurement, representing 50% of the material inside the die. The amount of undissolved drug particles was determined based on the lightness of the extrudates. It was shown that the temperature has a significant effect on the drug dissolution in the polymer. Furthermore, complete drug dissolution was shifted to lower temperatures if higher residence times were applied. Based on the courses of lightness, regime maps were modeled that specify the process conditions where ASDs are successfully manufactured.


Asunto(s)
Química Farmacéutica , Calor , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Solubilidad , Análisis Espectral , Polímeros/química
2.
Int J Pharm ; 603: 120668, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33945854

RESUMEN

Measurement methods for determining the density of compressed materials, being a critical quality attribute, provide an important parameter for successful processing. In this study, a novel approach was developed for determining the density of compacts using ultraviolet-visible spectrophotometry. The assumption within this context was that a change in density affects the corresponding color information of the compact. From the obtained spectra of the visible range, the color information of the compact was calculated which turned out to be directly proportional to the density of the compact. In comparison, the obtained spectra were analyzed using partial least square regression. The results of this study showed that both methods could be used predicting the density of a compact from the corresponding visible spectrum at identical accuracy. In contrast to the partial least square regression, the correlation of the color information as a direct output parameter of the spectrophotometer with the density required no excessive data pre-processing. Subsequently, the easier and faster data processing of the color information over the partial least square regression, conceives using this novel approach as potential process analytical technology tool for implementation into a compression process e.g., tableting or roller compaction.


Asunto(s)
Tecnología Farmacéutica , Análisis de los Mínimos Cuadrados , Comprimidos , Tecnología
3.
Pharmaceutics ; 12(6)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599822

RESUMEN

To avoid any type of cross-contamination, residue-free production equipment is of utmost importance in the pharmaceutical industry. The equipment cleaning for continuous processes such as hot melt extrusion (HME), which has recently gained popularity in pharmaceutical applications, necessitates extensive manual labour and costs. The present work tackles the HME cleaning issue by investigating two cleaning strategies following the extrusion of polymeric formulations of a hormonal drug and for a sustained release formulation of a poorly soluble drug. First, an in-line quantification by means of UV-Vis spectroscopy was successfully implemented to assess very low active pharmaceutical ingredient (API) concentrations in the extrudates during a cleaning procedure for the first time. Secondly, a novel in-situ solvent-based cleaning approach was developed and its usability was evaluated and compared to a polymer-based cleaning sequence. Comparing the in-line data to typical swab and rinse tests of the process equipment indicated that inaccessible parts of the equipment were still contaminated after the polymer-based cleaning procedure, although no API was detected in the extrudate. Nevertheless, the novel solvent-based cleaning approach proved to be suitable for removing API residue from the majority of problematic equipment parts and can potentially enable a full API cleaning-in-place of a pharmaceutical extruder for the first time.

4.
Pharmaceutics ; 12(2)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059445

RESUMEN

A key principle of developing a new medicine is that quality should be built in, with a thorough understanding of the product and the manufacturing process supported by appropriate process controls. Quality by design principles that have been established for the development of drug products/substances can equally be applied to the development of analytical procedures. This paper presents the development and validation of a quantitative method to predict the concentration of piroxicam in Kollidon® VA 64 during hot melt extrusion using analytical quality by design principles. An analytical target profile was established for the piroxicam content and a novel in-line analytical procedure was developed using predictive models based on UV-Vis absorbance spectra collected during hot melt extrusion. Risks that impact the ability of the analytical procedure to measure piroxicam consistently were assessed using failure mode and effect analysis. The critical analytical attributes measured were colour (L* lightness, b* yellow to blue colour parameters-in-process critical quality attributes) that are linked to the ability to measure the API content and transmittance. The method validation was based on the accuracy profile strategy and ICH Q2(R1) validation criteria. The accuracy profile obtained with two validation sets showed that the 95% ß-expectation tolerance limits for all piroxicam concentration levels analysed were within the combined trueness and precision acceptance limits set at ±5%. The method robustness was tested by evaluating the effects of screw speed (150-250 rpm) and feed rate (5-9 g/min) on piroxicam content around 15% w/w. In-line UV-Vis spectroscopy was shown to be a robust and practical PAT tool for monitoring the piroxicam content, a critical quality attribute in a pharmaceutical HME process.

5.
Pharmaceutics ; 10(4)2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30373197

RESUMEN

Over recent years Twin-Screw-Extrusion (TSE) has been established as a platform technology for pharmaceutical manufacturing. Compared to other continuous operation, one of the major benefits of this method is the combination of several unit operations within one apparatus. Several of these are linked to the Residence Time Distribution (RTD), which is typically expressed by the residence time density function. One relevant aspect for pharmaceutical processes is the mixing capacity, which is represented by the width of this distribution. In the frame of this study the influence of the mass flow, the temperature and the screw-barrel clearance were investigated for a constant barrel load (specific feed load, SFL). While the total mass flow as well as the external screw diameter affected the mixing performance, the barrel temperature had no influence for the investigated range. The determined results were additionally evaluated with respect to a fit to the Twin-Dispersion-Model (TDM). This model is based on the superimposition of two mixing functions. The correlations between varied process parameters and the obtained characteristic model parameters proved this general physical view on extrusion.

6.
AAPS PharmSciTech ; 19(7): 2818-2827, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30255473

RESUMEN

Chemical degradation of drug substances remains a major drawback of extrusion. Larger-scale extrusion equipment has advantages over smaller equipment due to deeper flight elements and added flexibility in terms of screw design, unit operations, and residence time. In a previous study, we extruded a meloxicam-copovidone amorphous solid dispersion (ASD) on a Nano-16 extruder and achieved 96.7% purity. The purpose of this study is to introduce a strategy for scaling the process to an extruder with dissimilar geometry and to investigate the impact on the purity of the ASD. The formulation previously optimized on the Nano-16, 10:90 meloxicam and copovidone, was used for scale-up. Our approach to scale-up to the ZSE-18, utilized specific mechanical energy input and degree of fill from the Nano-16. Vacuum was added to prevent hydrolysis of meloxicam. Downstream feeding and micronization of meloxicam were introduced to reduce the residence time. In-line monitoring of the solubilization of meloxicam was monitored with a UV probe positioned at the die. We were able to achieve the same purity of meloxicam with the Micro-18 as we achieved with Nano-16. When process conditions alone were not sufficient, meglumine was added to further stabilize meloxicam. In addition to the chemical stability advantage that meglumine provided, we also observed solubility enhancement which allowed for an increase in drug loading to 20% while maintaining 100% purity.


Asunto(s)
Química Farmacéutica/métodos , Calor , Meloxicam/análisis , Antiinflamatorios no Esteroideos/análisis , Antiinflamatorios no Esteroideos/química , Composición de Medicamentos , Congelación , Meloxicam/química , Solubilidad , Difracción de Rayos X/métodos
7.
Pharmaceutics ; 10(4)2018 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-30249025

RESUMEN

This paper displays the potential of an in-line PAT system for early phase product development during pharmaceutical continuous manufacturing following a Quality by Design (QbD) framework. Hot melt extrusion (HME) is used as continuous manufacturing process and UV⁻Vis spectroscopy as an in-line monitoring system. A sequential design of experiments (DoE) (screening, optimisation and verification) was used to gain process understanding for the manufacture of piroxicam (PRX)/Kollidon® VA64 amorphous solid dispersions. The influence of die temperature, screw speed, solid feed rate and PRX concentration on the critical quality attributes (CQAs) absorbance and lightness of color (L*) of the extrudates was investigated using multivariate tools. Statistical analysis results show interaction effects between concentration and temperature on absorbance and L* values. Solid feed rate has a significant effect on absorbance only and screw speed showed least impact on both responses for the screening design. The optimum HME process conditions were confirmed by 4 independent studies to be 20% w/w of PRX, temperature 140 °C, screw speed 200 rpm and feed rate 6 g/min. The in-line UV-Vis system was used to assess the solubility of PRX in Kollidon® VA64 by measuring absorbance and L* values from 230 to 700 nm. Oversaturation was observed for PRX concentrations higher than 20% w/w. Oversaturation can be readily identified as it causes scattering in the visible range. This is observed by a shift of the baseline in the visible part of the spectrum. Extrudate samples were analyzed for degradation using off-line High-Performance Liquid Chromatography (HPLC) standard methods. Results from off-line experiments using differential scanning calorimetry (DSC), and X-ray diffraction (XRD) are also presented.

8.
Pharmaceutics ; 10(2)2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29662034

RESUMEN

In the framework of Quality-by-Design (QbD), the inline determination of process parameters or quality attributes of a product using sufficient process analytical technology (PAT) is a center piece for the establishment of continuous processes as a standard pharmaceutical technology. In this context, Twin-Screw-Extrusion (TSE) processes, such as Hot-Melt-Extrusion (HME), are one key aspect of current research. The main benefit of this process technology is the combination of different unit operations. Several of these sub-processes are linked to the Residence Time Distribution (RTD) of the material within the apparatus. In this study a UV/Vis spectrophotometer from ColVisTec was tested regarding the suitability for the inline determination of the RTD of an HME process. Two different measuring positions within a co-rotating Twin-Screw-Extruder were compared to an offline HPLC-UV as reference method. The obtained results were overall in good agreement and therefore the inline UV/Vis spectrophotometer is suitable for the determination of the RTD in TSE. An influence of the measuring position on repeatability was found and has to be taken into consideration for the implementation of PATs. An effect of the required amount of marker on process rheology is not likely due to the low Limit-of-Quantification (LoQ).

9.
Drug Deliv Transl Res ; 8(6): 1595-1603, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29327264

RESUMEN

Hot-melt extrusion on co-rotating twin screw extruders is a focused technology for the production of pharmaceuticals in the context of Quality by Design. Since it is a continuous process, the potential for minimizing product quality fluctuation is enhanced. A typical application of hot-melt extrusion is the production of solid dispersions, where an active pharmaceutical ingredient (API) is distributed within a polymer matrix carrier. For this dosage form, the product quality is related amongst others to the drug content. This can be monitored on- or inline as critical quality attribute by a process analytical technology (PAT) in order to meet the specific requirements of Quality by Design. In this study, an inline UV/Vis spectrometer from ColVisTec was implemented in an early development twin screw extruder and the performance tested in accordance to the ICH Q2 guideline. Therefore, two API (carbamazepine and theophylline) and one polymer matrix (copovidone) were considered with the main focus on the quantification of the drug load. The obtained results revealed the suitability of the implemented PAT tool to quantify the drug load in a typical range for pharmaceutical applications. The effort for data evaluation was minimal due to univariate data analysis, and in combination with a measurement frequency of 1 Hz, the system is sufficient for real-time data acquisition.


Asunto(s)
Carbamazepina/síntesis química , Pirrolidinas/química , Tecnología Farmacéutica/instrumentación , Teofilina/síntesis química , Compuestos de Vinilo/química , Rastreo Diferencial de Calorimetría , Carbamazepina/química , Composición de Medicamentos , Estudios de Factibilidad , Calor , Espectroscopía Infrarroja Corta , Tecnología Farmacéutica/normas , Teofilina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...