Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Plast Reconstr Surg ; 153(1): 76-89, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37036325

RESUMEN

BACKGROUND: Breast implant-related complications can be reduced by strict antiseptic precautions during insertion, but bacteria can often be found on implant surfaces on the occasion of revision surgery. The authors prospectively analyzed the association of bacteria found on breast implant surfaces with implant-related complications in breast implant revision cases. METHODS: The authors analyzed a total of 100 breast implant revisions in 66 patients between August of 2018 and January of 2021. Capsular swabs and capsular samples were taken intraoperatively. Analyses on the occurrence of bacteria and the occurrence of implant-related complications were performed. In addition, correlations between bacteria-contaminated breast implant surfaces and implant-related complications were performed. RESULTS: Implant-related complications (perforation, rupture, capsular contraction) were observed in 42 implant sites: eight unilateral and 34 bilateral cases. In total, 16 swabs showed positive bacterial growth, 10 of which were associated with a breast implant-related complication (χ 2 = x, y, and z; P = 0.006). The most common implant-based complication at contaminated prosthetics was implant rupture. The association of contaminated breast implants and implant rupture was statistically significant. CONCLUSIONS: The authors identified a correlation between implant complications and Gram-positive bacteria found on breast implant surfaces. The most common implant-based complication seen at simultaneously positive samples was implant rupture in 50% of the authors' cases. No capsular contraction or other complications were seen. CLINICAL QUESTION/LEVEL OF EVIDENCE: Risk, III.


Asunto(s)
Implantación de Mama , Implantes de Mama , Mamoplastia , Humanos , Implantes de Mama/efectos adversos , Implantación de Mama/efectos adversos , Mamoplastia/efectos adversos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Bacterias Grampositivas
2.
Front Neuroanat ; 17: 1198042, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332322

RESUMEN

Basic behaviors, such as swallowing, speech, and emotional expressions are the result of a highly coordinated interplay between multiple muscles of the head. Control mechanisms of such highly tuned movements remain poorly understood. Here, we investigated the neural components responsible for motor control of the facial, masticatory, and tongue muscles in humans using specific molecular markers (ChAT, MBP, NF, TH). Our findings showed that a higher number of motor axonal population is responsible for facial expressions and tongue movements, compared to muscles in the upper extremity. Sensory axons appear to be responsible for neural feedback from cutaneous mechanoreceptors to control the movement of facial muscles and the tongue. The newly discovered sympathetic axonal population in the facial nerve is hypothesized to be responsible for involuntary control of the muscle tone. These findings shed light on the pivotal role of high efferent input and rich somatosensory feedback in neuromuscular control of finely adjusted cranial systems.

3.
J Neurosurg ; 139(5): 1396-1404, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37029679

RESUMEN

OBJECTIVE: Intrinsic function is indispensable for dexterous hand movements. Distal ulnar nerve defects can result in intrinsic muscle dysfunction and sensory deficits. Although the ulnar nerve's fascicular anatomy has been extensively studied, quantitative and topographic data on motor axons traveling within this nerve remain elusive. METHODS: The ulnar nerves of 14 heart-beating organ donors were evaluated. The motor branches to the flexor carpi ulnaris (FCU) and flexor digitorum profundus (FDP) muscles and the dorsal branch (DoBUN) as well as 3 segments of the ulnar nerve were harvested in 2-cm increments. Samples were subjected to double immunofluorescence staining using antibodies against choline acetyltransferase and neurofilament. RESULTS: Samples revealed more than 25,000 axons in the ulnar nerve at the forearm level, with a motor axon proportion of only 5%. The superficial and DoBUN showed high axon numbers of more than 21,000 and 9300, respectively. The axonal mapping of more than 1300 motor axons revealed an increasing motor/sensory ratio from the proximal ulnar nerve (1:20) to the deep branch of the ulnar nerve (1:7). The motor branches (FDP and FCU) showed that sensory axons outnumber motor axons by a ratio of 10:1. CONCLUSIONS: Knowledge of the detailed axonal architecture of the motor and sensory components of the human ulnar nerve is of the utmost importance for surgeons considering fascicular grafting or nerve transfer surgery. The low number of efferent axons in motor branches of the ulnar nerve and their distinct topographical distribution along the distal course of the nerve is indispensable information for modern nerve surgery.


Asunto(s)
Transferencia de Nervios , Nervio Cubital , Humanos , Antebrazo/inervación , Músculo Esquelético/inervación , Codo , Axones/fisiología
4.
Handchir Mikrochir Plast Chir ; 55(2): 140-147, 2023 Apr.
Artículo en Alemán | MEDLINE | ID: mdl-37023761

RESUMEN

The treatment of peripheral nerve pathologies requires a rapid and precise diagnosis. However, the correct identification of nerve pathologies is often difficult and valuable time is lost in the process. In this position paper of the German-Speaking Group for Microsurgery of Peripheral Nerves and Vessels (DAM), we describe the current evidence for various perioperative diagnostics for the detection of traumatic peripheral nerve lesions or compression syndromes. In detail, we evaluated the importance of clinical examinations, electrophysiology, nerve ultrasound and magnetic resonance neurography. Additionally, we surveyed our members for their diagnostic approach in this regard. The statements are based on a consensus workshop on the 42nd meeting of the DAM in Graz, Austria.


Asunto(s)
Microcirugia , Nervios Periféricos , Humanos , Síndrome , Nervios Periféricos/cirugía , Austria , Imagen por Resonancia Magnética
5.
J Pers Med ; 13(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36836578

RESUMEN

The peroneal nerve is one of the most commonly injured nerves of the lower extremity. Nerve grafting has been shown to result in poor functional outcomes. The aim of this study was to evaluate and compare anatomical feasibility as well as axon count of the tibial nerve motor branches and the tibialis anterior motor branch for a direct nerve transfer to reconstruct ankle dorsiflexion. In an anatomical study on 26 human body donors (52 extremities) the muscular branches to the lateral (GCL) and the medial head (GCM) of the gastrocnemius muscle, the soleus muscle (S) as well as the tibialis anterior muscle (TA) were dissected, and each nerve's external diameter was measured. Nerve transfers from each of the three donor nerves (GCL, GCM, S) to the recipient nerve (TA) were performed and the distance between the achievable coaptation site and anatomic landmarks was measured. Additionally, nerve samples were taken from eight extremities, and antibody as well immunofluorescence staining were performed, primarily evaluating axon count. The average diameter of the nerve branches to the GCL was 1.49 ± 0.37, to GCM 1.5 ± 0.32, to S 1.94 ± 0.37 and to TA 1.97 ± 0.32 mm, respectively. The distance from the coaptation site to the TA muscle was 43.75 ± 12.1 using the branch to the GCL, 48.31 ± 11.32 for GCM, and 19.12 ± 11.68 mm for S, respectively. The axon count for TA was 1597.14 ± 325.94, while the donor nerves showed 297.5 ± 106.82 (GCL), 418.5 ± 62.44 (GCM), and 1101.86 ± 135.92 (S). Diameter and axon count were significantly higher for S compared to GCL as well as GCM, while regeneration distance was significantly lower. The soleus muscle branch exhibited the most appropriate axon count and nerve diameter in our study, while also reaching closest to the tibialis anterior muscle. These results indicate the soleus nerve transfer to be the favorable option for the reconstruction of ankle dorsiflexion, in comparison to the gastrocnemius muscle branches. This surgical approach can be used to achieve a biomechanically appropriate reconstruction, in contrast to tendon transfers which generally only achieve weak active dorsiflexion.

6.
J Adv Res ; 44: 135-147, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725185

RESUMEN

INTRODUCTION: Neuromuscular control of the facial expressions is provided exclusively via the facial nerve. Facial muscles are amongst the most finely tuned effectors in the human motor system, which coordinate facial expressions. In lower vertebrates, the extracranial facial nerve is a mixed nerve, while in mammals it is believed to be a pure motor nerve. However, this established notion does not agree with several clinical signs in health and disease. OBJECTIVES: To elucidate the facial nerve contribution to the facial muscles by investigating axonal composition of the human facial nerve. To reveal new innervation pathways of other axon types of the motor facial nerve. METHODS: Different axon types were distinguished using specific molecular markers (NF, ChAT, CGRP and TH). To elucidate the functional role of axon types of the facial nerve, we used selective elimination of other neuronal support from the trigeminal nerve. We used retrograde neuronal tracing, three-dimensional imaging of the facial muscles, and high-fidelity neurophysiological tests in animal model. RESULTS: The human facial nerve revealed a mixed population of only 85% motor axons. Rodent samples revealed a fiber composition of motor, afferents and, surprisingly, sympathetic axons. We confirmed the axon types by tracing the originating neurons in the CNS. The sympathetic fibers of the facial nerve terminated in facial muscles suggesting autonomic innervation. The afferent fibers originated in the facial skin, confirming the afferent signal conduction via the facial nerve. CONCLUSION: These findings reveal new innervation pathways via the facial nerve, support the sympathetic etiology of hemifacial spasm and elucidate clinical phenomena in facial nerve regeneration.


Asunto(s)
Nervio Facial , Espasmo Hemifacial , Animales , Humanos , Axones/fisiología , Músculos Faciales , Nervio Facial/fisiología , Vías Nerviosas , Roedores
8.
J Neurosci ; 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216502

RESUMEN

The surgical redirection of efferent neural input to a denervated muscle via a nerve transfer can reestablish neuromuscular control after nerve injuries. The role of autonomic nerve fibers during the process of muscular reinnervation remains largely unknown. Here, we investigated the neurobiological mechanisms behind the spontaneous functional recovery of denervated facial muscles in male rodents. Recovered facial muscles demonstrated an abundance of cholinergic axonal endings establishing functional neuromuscular junctions. The parasympathetic source of the neuronal input was confirmed to be in the pterygopalatine ganglion. Furthermore, the autonomically reinnervated facial muscles underwent a muscle fiber change to a purely intermediate muscle fiber population (MHCIIa). Finally, electrophysiological tests revealed that the postganglionic parasympathetic fibers travel to the facial muscles via the sensory infraorbital nerve. Our findings demonstrated expanded neuromuscular plasticity of denervated striated muscles enabling functional recovery via alien autonomic fibers. These findings may further explain the underlying mechanisms of sensory protection implemented to prevent atrophy of a denervated muscle.SIGNIFICANCE STATEMENT:Nerve injuries represent significant morbidity and disability for patients. Rewiring motor nerve fibers to other target muscles have shown to be a successful approach in the restoration of motor function. This demonstrates the remarkable capacity of the central nervous system to adapt to the needs of the neuromuscular system. Yet, the capability of skeletal muscles being reinnervated by non-motor axons remains largely unknown. Here, we show that under deprivation of original efferent input, the neuromuscular system can undergo functional and morphological remodeling via autonomic nerve fibers. This may explain neurobiological mechanisms of the sensory protection phenomenon, which is due to parasympathetic reinnervation.

9.
J Clin Med ; 11(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35160259

RESUMEN

BACKGROUND: Surgical breast reconstruction is an integral part of cancer treatment but must not compromise oncological safety. Patient-dependent risk factors (smoking, BMI, etc.) are said to influence perioperative outcomes and have often been investigated. Here, we analyzed independent perioperative risk factors for increased postoperative blood loss or drainage fluid volume loss and their possible impact. METHODS: Patients undergoing breast reconstructions after breast cancer with either tissue expanders, definitive breast implants, or autologous breast reconstruction were analyzed. The collected data on patients' characteristics, blood, and drainage fluid loss were correlated and statistically investigated. RESULTS: Traditional patient-dependent risk factors did not influence blood loss or drainage volumes. On the contrary, patients with preoperative anemia had significantly higher drainage outputs compared to non-anemic patients (U = 2448.5; p = 0.0012). The administration of low molecular weight heparin showed a tendency of increased drainage output. Similar correlations could be seen in prolonged procedure time, all of which contributed to prolonged hospital stay (τb = 0.371; p < 0.00001). CONCLUSIONS: Preoperative anemia is one of the most critical factors influencing postoperative drainage fluid output. Previously assumed patient-dependent risk factors did not affect drainage output. Preoperative anemia must be monitored, and if possible, treated preoperatively to reduce postoperative morbidity.

10.
Plast Reconstr Surg Glob Open ; 10(2): e4118, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35198349

RESUMEN

The palmaris longus muscle is one of the most variant muscles in the human body. Its variations such as the palmaris profundus can cause nerve compression symptoms. Here, we present a case of severe nerve affection due to a palmaris profundus muscle. The palmaris profundus tendon was partially resected at intervention. Pain symptoms started immediately after wearing off of the local anesthetic, and revision surgery had to be performed. Severe traction on the median nerve by the palmaris profundus tendon could be observed at revision. The resection of the palmaris profundus tendon instantly eased the patient's severe pain. At preoperative examination and planning of surgery, the palmaris profundus was not detected. As there is no test for the detection of anatomic variations of the palmaris longus muscle at physical examination, discovering such anomalies is not possible without imaging tools. Ultrasonographic examinations aid in preoperative planning of carpal tunnel release, especially at revision surgeries.

11.
Clin Orthop Relat Res ; 480(6): 1191-1204, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35202032

RESUMEN

BACKGROUND: Currently used prosthetic solutions in upper extremity amputation have limited functionality, owing to low information transfer rates of neuromuscular interfacing. Although surgical innovations have expanded the functional potential of the residual limb, available interfaces are inefficacious in translating this potential into improved prosthetic control. There is currently no implantable solution for functional interfacing in extremity amputation which offers long-term stability, high information transfer rates, and is applicable for all levels of limb loss. In this study, we presented a novel neuromuscular implant, the the Myoelectric Implantable Recording Array (MIRA). To our knowledge, it is the first fully implantable system for prosthetic interfacing with a large channel count, comprising 32 intramuscular electrodes. QUESTIONS/PURPOSES: The purpose of this study was to evaluate the MIRA in terms of biocompatibility, functionality, and feasibility of implantation to lay the foundations for clinical application. This was achieved through small- and large-animal studies as well as test surgeries in a human cadaver. METHODS: We evaluated the biocompatibility of the system's intramuscular electromyography (EMG) leads in a rabbit model. Ten leads as well as 10 pieces of a biologically inert control material were implanted into the paravertebral muscles of four animals. After a 3-month implantation, tissue samples were taken and histopathological assessment performed. The probes were scored according to a protocol for the assessment of the foreign body response, with primary endpoints being inflammation score, tissue response score, and capsule thickness in µm. In a second study, chronic functionality of the full system was evaluated in large animals. The MIRA was implanted into the shoulder region of six dogs and three sheep, with intramuscular leads distributed across agonist and antagonist muscles of shoulder flexion. During the observation period, regular EMG measurements were performed. The implants were removed after 5 to 6 months except for one animal, which retained the implant for prolonged observation. Primary endpoints of the large-animal study were mechanical stability, telemetric capability, and EMG signal quality. A final study involved the development of test surgeries in a fresh human cadaver, with the goal to determine feasibility to implant relevant target muscles for prosthetic control at all levels of major upper limb amputation. RESULTS: Evaluation of the foreign body reaction revealed favorable biocompatibility and a low-grade tissue response in the rabbit study. No differences regarding inflammation score (EMG 4.60 ± 0.97 [95% CI 4.00 to 5.20] versus control 4.20 ± 1.48 [95% CI 3.29 to 5.11]; p = 0.51), tissue response score (EMG 4.00 ± 0.82 [95% CI 3.49 to 4.51] versus control 4.00 ± 0.94 [95% CI 3.42 to 4.58]; p > 0.99), or thickness of capsule (EMG 19.00 ± 8.76 µm [95% CI 13.57 to 24.43] versus control 29.00 ± 23.31 µm [95% CI 14.55 to 43.45]; p = 0.29) were found compared with the inert control article (high-density polyethylene) after 3 months of intramuscular implantation. Throughout long-term implantation of the MIRA in large animals, telemetric communication remained unrestricted in all specimens. Further, the implants retained the ability to record and transmit intramuscular EMG data in all animals except for two sheep where the implants became dislocated shortly after implantation. Electrode impedances remained stable and below 5 kΩ. Regarding EMG signal quality, there was little crosstalk between muscles and overall average signal-to-noise ratio was 22.2 ± 6.2 dB. During the test surgeries, we found that it was possible to implant the MIRA at all major amputation levels of the upper limb in a human cadaver (the transradial, transhumeral, and glenohumeral levels). For each level, it was possible to place the central unit in a biomechanically stable environment to provide unhindered telemetry, while reaching the relevant target muscles for prosthetic control. At only the glenohumeral level, it was not possible to reach the teres major and latissimus dorsi muscles, which would require longer lead lengths. CONCLUSION: As assessed in a combination of animal model and cadaver research, the MIRA shows promise for clinical research in patients with limb amputation, where it may be employed for all levels of major upper limb amputation to provide long-term stable intramuscular EMG transmission. CLINICAL RELEVANCE: In our study, the MIRA provided high-bandwidth prosthetic interfacing through intramuscular electrode sites. Its high number of individual EMG channels may be combined with signal decoding algorithms for accessing spinal motor neuron activity after targeted muscle reinnervation, thus providing numerous degrees of freedom. Together with recent innovations in amputation surgery, the MIRA might enable improved control approaches for upper limb amputees, particularly for patients with above-elbow amputation where the mismatch between available control signals and necessary degrees of freedom for prosthetic control is highest.


Asunto(s)
Miembros Artificiales , Animales , Cadáver , Perros , Electrodos Implantados , Electromiografía , Estudios de Factibilidad , Humanos , Inflamación , Conejos , Ovinos
12.
Neural Regen Res ; 17(5): 1088-1095, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34558537

RESUMEN

Clinically, peripheral nerve reconstructions in neonates are most frequently applied in brachial plexus birth injuries. Most surgical concepts, however, have investigated nerve reconstructions in adult animal models. The immature neuromuscular system reacts differently to the effects of nerve lesion and surgery and is poorly investigated due to the lack of reliable experimental models. Here, we describe an experimental forelimb model in the neonatal rat, to study these effects on both the peripheral and central nervous systems. Within 24 hours after birth, three groups were prepared: In the nerve transfer group, a lesion of the musculocutaneous nerve was reconstructed by selectively transferring the ulnar nerve. In the negative control group, the musculocutaneous nerve was divided and not reconstructed and in the positive control group, a sham surgery was performed. The animal´s ability to adapt to nerve lesions and progressive improvement over time were depict by the Bertelli test, which observes the development of grooming. Twelve weeks postoperatively, animals were fully matured and the nerve transfer successfully reinnervated their target muscles, which was indicated by muscle force, muscle weight, and cross sectional area evaluation. On the contrary, no spontaneous regeneration was found in the negative control group. In the positive control group, reference values were established. Retrograde labeling indicated that the motoneuron pool of the ulnar nerve was reduced following nerve transfer. Due to this post-axotomy motoneuron death, a diminished amount of motoneurons reinnervated the biceps muscle in the nerve transfer group, when compared to the native motoneuron pool of the musculocutaneous nerve. These findings indicate that the immature neuromuscular system behaves profoundly different than similar lesions in adult rats and explains reduced muscle force. Ultimately, pathophysiologic adaptations are inevitable. The maturing neuromuscular system, however, utilizes neonatal capacity of regeneration and seizes a variety of compensation mechanism to restore a functional extremity. The above described neonatal rat model demonstrates a constant anatomy, suitable for nerve transfers and allows all standard neuromuscular analyses. Hence, detailed investigations on the pathophysiological changes and subsequent effects of trauma on the various levels within the neuromuscular system as well as neural reorganization of the neonatal rat may be elucidated. This study was approved by the Ethics Committee of the Medical University of Vienna and the Austrian Ministry for Research and Science (BMWF-66.009/0187-WF/V/3b/2015) on March 20, 2015.

14.
Hand Clin ; 37(3): 415-424, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34253314

RESUMEN

Targeted muscle reinnervation (TMR) is a surgical procedure, whereby nerves without muscle targets after extremity amputation are transferred to residual stump muscles. Thereby, the control of prosthesis is improved by increasing the number of independent muscle signals. The authors describe indications for TMR to improve prosthetic control and present standard nerve transfer matrices suitable for transhumeral and glenohumeral amputees. In addition, the perioperative procedure is described, including preoperative testing, surgical approach, and postoperative rehabilitation. Based on recent neurophysiological insights and technological advances, they present an outlook into the future of prosthetic control combining TMR and implantable electromyographic technology.


Asunto(s)
Amputados , Miembros Artificiales , Amputación Quirúrgica , Muñones de Amputación , Humanos , Músculo Esquelético/cirugía
15.
Sci Rep ; 11(1): 12360, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117270

RESUMEN

For large avians such as vultures, limb loss leads to loss of ambulation and eventually death from malnutrition. Prosthetic devices may replace the limb, however, conventional prosthetic sockets are not feasible in feathered limbs and the extreme stress and strain of unreflected daily use in animals. Osseointegration is a novel technique, where external prosthetic parts are connected directly to a bone anchor to provide a solid skeletal-attachment. This concept provides a high degree of embodiment since osseoperception will provide direct intuitive feedback allowing natural use of the limb in gait and feeding. Here we demonstrate for the first time an osseointegrated bionic reconstruction of a limb in a vulture after a tarsometatarsal amputation with a longterm follow-up.

16.
Front Neuroanat ; 15: 650761, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828465

RESUMEN

The facial dermato-muscular system consists of highly specialized muscles tightly adhering to the overlaying skin and thus form a complex morphological conglomerate. This is the anatomical and functional basis for versatile facial expressions, which are essential for human social interaction. The neural innervation of the facial skin and muscles occurs via branches of the trigeminal and facial nerves. These are also the most commonly pathologically affected cranial nerves, often requiring surgical treatment. Hence, experimental models for researching these nerves and their pathologies are highly relevant to study pathophysiology and nerve regeneration. Experimental models for the distinctive investigation of the complex afferent and efferent interplay within facial structures are scarce. In this study, we established a robust surgical model for distinctive exploration of facial structures after complete elimination of afferent or efferent innervation in the rat. Animals were allocated into two groups according to the surgical procedure. In the first group, the facial nerve and in the second all distal cutaneous branches of the trigeminal nerve were transected unilaterally. All animals survived and no higher burden was caused by the procedures. Whisker pad movements were documented with video recordings 4 weeks after surgery and showed successful denervation. Whole-mount immunofluorescent staining of facial muscles was performed to visualize the innervation pattern of the neuromuscular junctions. Comprehensive quantitative analysis revealed large differences in afferent axon counts in the cutaneous branches of the trigeminal nerve. Axon number was the highest in the infraorbital nerve (28,625 ± 2,519), followed by the supraorbital nerve (2,131 ± 413), the mental nerve (3,062 ± 341), and the cutaneous branch of the mylohyoid nerve (343 ± 78). Overall, this surgical model is robust and reliable for distinctive surgical deafferentation or deefferentation of the face. It may be used for investigating cortical plasticity, the neurobiological mechanisms behind various clinically relevant conditions like facial paralysis or trigeminal neuralgia as well as local anesthesia in the face and oral cavity.

18.
Front Med (Lausanne) ; 7: 613138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363189

RESUMEN

Introduction: Current imaging modalities for peripheral nerves display the nerve's structure but not its function. Based on a nerve's capacity for axonal transport, it may be visualized by targeted application of a contrast agent and assessing the distribution through radiological imaging, thus revealing a nerve's continuity. This concept has not been explored, however, may potentially guide the treatment of peripheral nerve injuries. In this experimental proof-of-concept study, we tested imaging through MRI after administering gadolinium-based contrast agents which were then retrogradely transported. Methods: We synthesized MRI contrast agents consisting of paramagnetic agents and various axonal transport facilitators (HSA-DTPA-Gd, chitosan-DTPA-Gd or PLA/HSA-DTPA-Gd). First, we measured their relaxivity values in vitro to assess their radiological suitability. Subsequently, the sciatic nerve of 24 rats was cut and labeled with one of the contrast agents to achieve retrograde distribution along the nerve. One week after surgery, the spinal cords and sciatic nerves were harvested to visualize the distribution of the respective contrast agent using 7T MRI. In vivo MRI measurements were performed using 9.4 T MRI on the 1st, 3rd, and the 7th day after surgery. Following radiological imaging, the concentration of gadolinium in the harvested samples was analyzed using inductively coupled mass spectrometry (ICP-MS). Results: All contrast agents demonstrated high relaxivity values, varying between 12.1 and 116.0 mM-1s-1. HSA-DTPA-Gd and PLA/HSA-DTPA-Gd application resulted in signal enhancement in the vertebral canal and in the sciatic nerve in ex vivo MRI. In vivo measurements revealed significant signal enhancement in the sciatic nerve on the 3rd and 7th day after HSA-DTPA-Gd and chitosan-DTPA-Gd (p < 0.05) application. Chemical evaluation showed high gadolinium concentration in the sciatic nerve for HSA-DTPA-Gd (5.218 ± 0.860 ng/mg) and chitosan-DTPA-Gd (4.291 ± 1.290 ng/mg). Discussion: In this study a novel imaging approach for the evaluation of a peripheral nerve's integrity was implemented. The findings provide radiological and chemical evidence of successful contrast agent uptake along the sciatic nerve and its distribution within the spinal canal in rats. This novel concept may assist in the diagnostic process of peripheral nerve injuries in the future.

19.
Front Med (Lausanne) ; 7: 590758, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262992

RESUMEN

Background : Patients with high- and low-voltage electrical injuries differ in their clinical presentation from minor symptoms to life-threatening conditions. For an adequate diagnosis and treatment strategy a multidisciplinary team is often needed, due to the heterogeneity of the clinical presentation. To minimize costs and medical resources, especially for patients with mild symptoms presenting after low-voltage electrical injuries, risk stratification for the development of further complications is needed. Methods : During 2012-2019 two independent patient cohorts admitted with electrical injuries in two maximum care university hospitals in Germany and Austria were investigated to quantify risk factors for prolonged treatment, the need of surgery and death in low-voltage injuries. High-voltage injuries were used as reference in the analysis of the low-voltage electrical injury. Results : We analyzed 239 admitted patients with low-voltage (75%; 276 ± 118 V), high-voltage (17%; 12.385 ± 28.896 V) or unclear voltage (8%). Overall mortality was 2% (N = 5) associated only with high-voltage injuries. Patients with low-voltage injuries presented with electrocution entry marks (63%), various neurological symptoms (31%), burn injuries (at least second degree) (23%), pain (27%), and cardiac symptoms (9%) including self-limiting thoracic pain and dysrhythmia without any therapeutic need. Seventy three percentage of patients with low-voltage injury were discharged within 24 h. The remaining patients stayed in the hospital (11 ± 10 days) for treatment of entry marks and burns, with an overall need for surgery of 12% in all low-voltage injuries. Conclusions : The only identified risk factors for prolonged hospital stay in patients with low-voltage electrical injuries were the treatment of burns and electric marks. In this multi-center analysis of hospitalized patients, low-voltage electrical injuries were not associated with cardiac arrhythmia or mortality. Therefore, we suggest that asymptomatic patients, without preexisting conditions, with low-voltage injury can be discharged after an initial check-up without prolonged monitoring.

20.
Front Vet Sci ; 7: 570852, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195561

RESUMEN

Background: Modern surgery demands high-quality and reproducibility. Due to new working directives, resident duty hours have been restricted and evidence exists that pure on-the-job training provides insufficient exposure. We hypothesize that supplemental simulations in animal models provide a realistic training to augment clinical experiences. This study reviews surgical training models, their costs and survey results illustrating academic acceptance. Methods: Animal models were identified by literature research. Costs were analyzed from multiple German and Austrian training programs. A survey on their acceptance was conducted among faculty and medical students. Results: 915 articles were analyzed, thereof 91 studies described in-vivo animal training models, predominantly for laparoscopy (30%) and microsurgery (24%). Cost-analysis revealed single-training costs between 307€ and 5,861€ depending on model and discipline. Survey results illustrated that 69% of the participants had no experience, but 66% would attend training under experienced supervision. Perceived public acceptance was rated intermediate by medical staff and students (4.26; 1-low, 10 high). Conclusion: Training in animals is well-established and was rated worth attending in a majority of a representative cohort to acquire key surgical skills, in light of reduced clinical exposure. Animal models may therefore supplement the training of tomorrow's surgeons to overcome limited hands-on experience until virtual simulations can provide such educational tools.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...