Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 19(9): 1147-1157, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37291200

RESUMEN

Fluorescent biosensors enable the study of cell physiology with spatiotemporal resolution; yet, most biosensors suffer from relatively low dynamic ranges. Here, we introduce a family of designed Förster resonance energy transfer (FRET) pairs with near-quantitative FRET efficiencies based on the reversible interaction of fluorescent proteins with a fluorescently labeled HaloTag. These FRET pairs enabled the straightforward design of biosensors for calcium, ATP and NAD+ with unprecedented dynamic ranges. The color of each of these biosensors can be readily tuned by changing either the fluorescent protein or the synthetic fluorophore, which enables simultaneous monitoring of free NAD+ in different subcellular compartments following genotoxic stress. Minimal modifications of these biosensors furthermore allow their readout to be switched to fluorescence intensity, fluorescence lifetime or bioluminescence. These FRET pairs thus establish a new concept for the development of highly sensitive and tunable biosensors.


Asunto(s)
Técnicas Biosensibles , NAD , Proteínas Luminiscentes/metabolismo , NAD/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Técnicas Biosensibles/métodos
2.
Nucleic Acids Res ; 47(22): 11589-11608, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31713634

RESUMEN

Centromere function requires the presence of the histone H3 variant CENP-A in most eukaryotes. The precise localization and protein amount of CENP-A are crucial for correct chromosome segregation, and misregulation can lead to aneuploidy. To characterize the loading of CENP-A to non-centromeric chromatin, we utilized different truncation- and localization-deficient CENP-A mutant constructs in Drosophila melanogaster cultured cells, and show that the N-terminus of Drosophila melanogaster CENP-A is required for nuclear localization and protein stability, and that CENP-A associated proteins, rather than CENP-A itself, determine its localization. Co-expression of mutant CENP-A with its loading factor CAL1 leads to exclusive centromere loading of CENP-A whereas co-expression with the histone-binding protein RbAp48 leads to exclusive non-centromeric CENP-A incorporation. Mass spectrometry analysis of non-centromeric CENP-A interacting partners identified the RbAp48-containing NuRD chromatin remodeling complex. Further analysis confirmed that NuRD is required for ectopic CENP-A incorporation, and RbAp48 and MTA1-like subunits of NuRD together with the N-terminal tail of CENP-A mediate the interaction. In summary, our data show that Drosophila CENP-A has no intrinsic specificity for centromeric chromatin and utilizes separate loading mechanisms for its incorporation into centromeric and ectopic sites. This suggests that the specific association and availability of CENP-A interacting factors are the major determinants of CENP-A loading specificity.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Proteínas de Drosophila/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Animales , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster , Dominios Proteicos , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Transactivadores/metabolismo
3.
PLoS Genet ; 15(9): e1008380, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31553715

RESUMEN

A defining feature of centromeres is the presence of the histone H3 variant CENP-A that replaces H3 in a subset of centromeric nucleosomes. In Drosophila cultured cells CENP-A deposition at centromeres takes place during the metaphase stage of the cell cycle and strictly depends on the presence of its specific chaperone CAL1. How CENP-A loading is restricted to mitosis is unknown. We found that overexpression of CAL1 is associated with increased CENP-A levels at centromeres and uncouples CENP-A loading from mitosis. Moreover, CENP-A levels inversely correlate with mitosis duration suggesting crosstalk of CENP-A loading with the regulatory machinery of mitosis. Mitosis length is influenced by the spindle assembly checkpoint (SAC), and we found that CAL1 interacts with the SAC protein and RZZ complex component Zw10 and thus constitutes the anchor for the recruitment of RZZ. Therefore, CAL1 controls CENP-A incorporation at centromeres both quantitatively and temporally, connecting it to the SAC to ensure mitotic fidelity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteína A Centromérica/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/citología , Animales , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Centrómero/metabolismo , Proteína A Centromérica/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Histonas/metabolismo , Cinetocoros/metabolismo , Mitosis
4.
Cell Rep ; 7(2): 321-330, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24703848

RESUMEN

Chromatin reorganization and the incorporation of specific histone modifications during DNA damage response are essential steps for the successful repair of any DNA lesion. Here, we show that the histone-fold protein CHRAC14 plays an essential role in response to DNA damage in Drosophila. Chrac14 mutants are hypersensitive to genotoxic stress and do not activate the G2/M cell-cycle checkpoint after damage induction. Even though the DNA damage repair process is activated in the absence of CHRAC14, lesions are not repaired efficiently. In the absence of CHRAC14, the centromere-specific histone H3 variant CENP-A localizes to sites of DNA damage, causing ectopic kinetochore formation and genome instability. CENP-A and CHRAC14 are able to interact upon damage. Our data suggest that CHRAC14 modulates chromatin composition in response to DNA damage, which is required for efficient DNA damage repair in Drosophila.


Asunto(s)
Cromatina/metabolismo , Daño del ADN , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Nucleoproteínas/metabolismo , Animales , Autoantígenos/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Drosophila/genética , Proteínas de Drosophila/genética , Puntos de Control de la Fase G2 del Ciclo Celular , Inestabilidad Genómica , Cinetocoros/metabolismo , Nucleoproteínas/genética
5.
Plant Mol Biol ; 63(1): 49-61, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17139450

RESUMEN

Glucosinolates are a class of thioglycosides found predominantly in plants of the order Brassicales whose function in anti-herbivore defense has been attributed to the products formed by myrosinase-catalyzed hydrolysis upon plant tissue damage. The most common type of hydrolysis products, the isothiocyanates, are toxic to a wide range of organisms. Depending on the glucosinolate side-chain structure and the presence of certain protein factors, other types of hydrolysis products, such as simple nitriles, epithionitriles and organic thiocyanates, can be formed whose biological functions are not well understood. Of the proteins controlling glucosinolate hydrolysis, only epithiospecifier proteins (ESPs) that promote the formation of simple nitriles and epithionitriles have been identified on a molecular level. We investigated glucosinolate hydrolysis in Lepidium sativum and identified a thiocyanate-forming protein (TFP) that shares 63-68% amino acid sequence identity with known ESPs and up to 55% identity with myrosinase-binding proteins from Arabidopsis thaliana, but differs from ESPs in its biochemistry. TFP does not only catalyze thiocyanate and simple nitrile formation from benzylglucosinolate but also the formation of simple nitriles and epithionitriles from aliphatic glucosinolates. Analyses of glucosinolate hydrolysis products in L. sativum autolysates and TFP transcript accumulation revealed an organ-specific regulation of thiocyanate formation. The identification of TFP defines a new family of proteins that control glucosinolate hydrolysis and challenges the previously proposed reaction mechanism of epithionitrile formation. As a protein that promotes the formation of a wide variety of hydrolysis products, its identification provides an important tool for further elucidating the mechanisms of glucosinolate hydrolysis as well as the ecological role and the evolutionary origin of the glucosinolate-myrosinase system.


Asunto(s)
Glucosinolatos/metabolismo , Lepidium sativum/metabolismo , Proteínas de Plantas/metabolismo , Tiocianatos/metabolismo , Secuencia de Aminoácidos , Cromatografía de Gases , Regulación de la Expresión Génica de las Plantas , Glicósido Hidrolasas/metabolismo , Hidrólisis , Datos de Secuencia Molecular , Estructura Molecular , Proteínas de Plantas/genética , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Especificidad por Sustrato , Tiocianatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...