Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nucleic Acids Res ; 50(D1): D316-D325, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34751401

RESUMEN

ReMap (https://remap.univ-amu.fr) aims to provide manually curated, high-quality catalogs of regulatory regions resulting from a large-scale integrative analysis of DNA-binding experiments in Human, Mouse, Fly and Arabidopsis thaliana for hundreds of transcription factors and regulators. In this 2022 update, we have uniformly processed >11 000 DNA-binding sequencing datasets from public sources across four species. The updated Human regulatory atlas includes 8103 datasets covering a total of 1210 transcriptional regulators (TRs) with a catalog of 182 million (M) peaks, while the updated Arabidopsis atlas reaches 4.8M peaks, 423 TRs across 694 datasets. Also, this ReMap release is enriched by two new regulatory catalogs for Mus musculus and Drosophila melanogaster. First, the Mouse regulatory catalog consists of 123M peaks across 648 TRs as a result of the integration and validation of 5503 ChIP-seq datasets. Second, the Drosophila melanogaster catalog contains 16.6M peaks across 550 TRs from the integration of 1205 datasets. The four regulatory catalogs are browsable through track hubs at UCSC, Ensembl and NCBI genome browsers. Finally, ReMap 2022 comes with a new Cis Regulatory Module identification method, improved quality controls, faster search results, and better user experience with an interactive tour and video tutorials on browsing and filtering ReMap catalogs.


Asunto(s)
Arabidopsis/genética , Bases de Datos Genéticas , Drosophila melanogaster/genética , Elementos Reguladores de la Transcripción , Programas Informáticos , Factores de Transcripción/genética , Transcripción Genética , Animales , Arabidopsis/metabolismo , Atlas como Asunto , Secuencia de Bases , Sitios de Unión , ADN/genética , ADN/metabolismo , Conjuntos de Datos como Asunto , Drosophila melanogaster/metabolismo , Redes Reguladoras de Genes , Humanos , Internet , Ratones , Análisis de Secuencia de ADN , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo
2.
Front Immunol ; 12: 765264, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35058920

RESUMEN

Background: Changes in innate and adaptive immunity occurring in/around pancreatic islets had been observed in peripheral blood mononuclear cells (PBMC) of Caucasian T1D patients by some, but not all researchers. The aim of our study was to investigate whether gene expression patterns of PBMC of the highly admixed Brazilian population could add knowledge about T1D pathogenic mechanisms. Methods: We assessed global gene expression in PBMC from two groups matched for age, sex and BMI: 20 patients with recent-onset T1D (≤ 6 months from diagnosis, in a time when the autoimmune process is still highly active), testing positive for one or more islet autoantibodies and 20 islet autoantibody-negative healthy controls. Results: We identified 474 differentially expressed genes between groups. The most expressed genes in T1D group favored host defense, inflammatory and anti-bacterial/antiviral effects (LFT, DEFA4, DEFA1, CTSG, KCNMA1) and cell cycle progression. Several of the downregulated genes in T1D target cellular repair, control of inflammation and immune tolerance. They were related to T helper 2 pathway, induction of FOXP3 expression (AREG) and immune tolerance (SMAD6). SMAD6 expression correlated negatively with islet ZnT8 antibody. The expression of PDE12, that offers resistance to viral pathogens was decreased and negatively related to ZnT8A and GADA levels. The increased expression of long non coding RNAs MALAT1 and NEAT1, related to inflammatory mediators, autoimmune diseases and innate immune response against viral infections reinforced these data. Conclusions: Our analysis suggested the activation of cell development, anti-infectious and inflammatory pathways, indicating immune activation, whereas immune-regulatory pathways were downregulated in PBMC from recent-onset T1D patients with a differential genetic profile.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Regulación de la Expresión Génica/inmunología , Tolerancia Inmunológica , Células Th2/inmunología , Adolescente , Adulto , Niño , Diabetes Mellitus Tipo 1/genética , Femenino , Humanos , Inflamación/genética , Inflamación/inmunología , Masculino
3.
Mediators Inflamm ; 2020: 3280689, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32801995

RESUMEN

BACKGROUND: Cerebral malaria (CM), a reversible encephalopathy affecting young children, is a medical emergency requiring rapid clinical assessment and treatment. However, understanding of the genes/proteins and the biological pathways involved in the disease outcome is still limited. METHODS: We have performed a whole transcriptomic analysis of blood samples from Malian children with CM or uncomplicated malaria (UM). Hierarchical clustering and pathway, network, and upstream regulator analyses were performed to explore differentially expressed genes (DEGs). We validated gene expression for 8 genes using real-time quantitative PCR (RT-qPCR). Plasma levels were measured for IP-10/CXCL10 and IL-18. RESULTS: A blood RNA signature including 538 DEGs (∣FC | ≥2.0, adjusted P value ≤ 0.01) allowed to discriminate between CM and UM. Ingenuity Pathway Analysis (IPA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed novel genes and biological pathways related to immune/inflammatory responses, erythrocyte alteration, and neurodegenerative disorders. Gene expressions of CXCL10, IL12RB2, IL18BP, IL2RA, AXIN2, and NET were significantly lower in CM whereas ARG1 and SLC6A9 were higher in CM compared to UM. Plasma protein levels of IP-10/CXCL10 were significantly lower in CM than in UM while levels of IL-18 were higher. Interestingly, among children with CM, those who died from a complication of malaria tended to have higher concentrations of IP-10/CXCL10 and IFN-γ than those who recovered. CONCLUSIONS: This study identified some new factors and mechanisms that play crucial roles in CM and characterized their respective biological pathways as well as some upstream regulators.


Asunto(s)
Encéfalo/metabolismo , Eritrocitos/metabolismo , Inflamación/sangre , Malaria Cerebral/genética , Malaria Cerebral/metabolismo , Transcriptoma/genética , Quimiocina CXCL10/sangre , Biología Computacional/métodos , Humanos , Interleucina-18/sangre , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
J Cell Biochem ; 121(12): 4870-4886, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32628295

RESUMEN

The presence of nuclear ERBB2 receptor-type tyrosine kinase is one of the causes of the resistance to membrane ERBB2-targeted therapy in breast cancers. It has been previously reported that this nuclear location arises through at least two different mechanisms: proteolytic shedding of the extracellular domain of the full-length receptor and translation of the messenger RNA (mRNA)-encoding ERBB2 from internal initiation codons. Here, we report a new mechanism and function where a significant portion of nuclear ERBB2 results from the translation of the variant ERBB2 mRNA under the transcriptional control of a distal promoter that is actively used in breast cancer cells. We show that both membrane ERBB2a and nuclear ERBB2b isoforms are prevalently expressed in breast cancer cell lines and carcinoma samples. The ERBB2b isoform, which is translated from mRNA variant 2, can directly translocate into the nucleus due to the lack of the signal peptide which is required for an intermediate membrane location. Small interfering RNA-mediated gene silencing showed that ERBB2b can repress ERBB2a expression, encoded by variant 1, whereas ERBB2a activates ERBB2b. Nuclear ERBB2 binding to its own promoter was revealed by chromatin immunoprecipitation assay. Altogether, our results provide new insights into the origin and function of nuclear ERBB2 where it can participate at the same time in a positive or a negative feedback autoregulatory loop, dependent on which of its promoters this bona fide transcription factor is acting. They also provide a new understanding for the resistance to therapies targeting the membrane-anchored ERBB2 in breast cancer.

5.
Nucleic Acids Res ; 48(D1): D180-D188, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31665499

RESUMEN

ReMap (http://remap.univ-amu.fr) aims to provide the largest catalogs of high-quality regulatory regions resulting from a large-scale integrative analysis of hundreds of transcription factors and regulators from DNA-binding experiments in Human and Arabidopsis (Arabidopsis thaliana). In this 2020 update of ReMap we have collected, analyzed and retained after quality control 2764 new human ChIP-seq and 208 ChIP-exo datasets available from public sources. The updated human atlas totalize 5798 datasets covering a total of 1135 transcriptional regulators (TRs) with a catalog of 165 million (M) peaks. This ReMap update comes with two unique Arabidopsis regulatory catalogs. First, a catalog of 372 Arabidopsis TRs across 2.6M peaks as a result of the integration of 509 ChIP-seq and DAP-seq datasets. Second, a catalog of 33 histone modifications and variants across 4.5M peaks from the integration of 286 ChIP-seq datasets. All catalogs are made available through track hubs at Ensembl and UCSC Genome Browsers. Additionally, this update comes with a new web framework providing an interactive user-interface, including improved search features. Finally, full programmatically access to the underlying data is available using a RESTful API together with a new R Shiny interface for a TRs binding enrichment analysis tool.


Asunto(s)
Arabidopsis/genética , Bases de Datos Genéticas , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Código de Histonas , Humanos , Interfaz Usuario-Computador
6.
FEMS Microbiol Lett ; 365(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29566166

RESUMEN

Shewanella algae C6G3 can dissimilatively reduce nitrate into ammonium and manganese oxide (MnIV) into MnII. It has the unusual ability to anaerobically produce nitrite from ammonium in the presence of MnIV. To gain insight into their metabolic capabilities, global mRNA expression patterns were investigated by RNA-seq and qRT-PCR in cells growing with lactate and ammonium as carbon and nitrogen sources, and with either MnIV or nitrate as electron acceptors. Genes exhibiting higher expression levels in the presence of MnIV belonged to functional categories of carbohydrate, coenzyme, lipid metabolisms and inorganic ion transport. The comparative transcriptomic pattern between MnIV and NO3 revealed that the strain presented an ammonium limitation status with MnIV, despite the presence of a non-limiting concentration of ammonium under both culture conditions. In addition, in the presence of MnIV, ntrB/nrtC regulators, ammonium channel, nitrogen regulatory protein P-II, glutamine synthetase and asparagine synthetase glutamine-dependent genes were over-represented. Under the nitrate condition, the expression of genes involved in the synthesis of several amino acids was increased. Finally, the expression level of genes associated with the general stress response was also amplified in both conditions and among them, katE, a putative catalase/peroxidase present on several Shewanella genomes, was highly expressed with a median value relatively higher in the MnIV condition.


Asunto(s)
Compuestos de Amonio/metabolismo , Regulación Bacteriana de la Expresión Génica , Compuestos de Manganeso/metabolismo , Nitratos/metabolismo , Óxidos/metabolismo , Shewanella/metabolismo , Proteínas Bacterianas/metabolismo , Catalasa/genética , Catalasa/metabolismo , Transporte de Electrón , Electrones , Peroxidasa/genética , Peroxidasa/metabolismo , Shewanella/genética , Shewanella/crecimiento & desarrollo
7.
Mol Cancer Res ; 16(3): 470-475, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29330284

RESUMEN

Leukemias are frequently characterized by the expression of oncogenic fusion chimeras that normally arise due to chromosomal rearrangements. Intergenically spliced chimeric RNAs (ISC) are transcribed in the absence of structural genomic changes, and aberrant ISC expression is now recognized as a potential driver of cancer. To better understand these potential oncogenic drivers, high-throughput RNA sequencing was performed on T-acute lymphoblastic leukemia (T-ALL) patient specimens (n = 24), and candidate T-ALL-related ISCs were identified (n = 55; a median of 4/patient). In-depth characterization of the NFATC3-PLA2G15 chimera, which was variably expressed in primary T-ALL, was performed. Functional assessment revealed that the fusion had lower activity than wild-type NFATC3 in vitro, and T-ALLs with elevated NFATC3-PLA2G15 levels had reduced transcription of canonical NFAT pathway genes in vivo Strikingly, high expression of the NFATC3-PLA2G15 chimera correlated with aggressive disease biology in murine patient-derived T-ALL xenografts, and poor prognosis in human T-ALL patients. Mol Cancer Res; 16(3); 470-5. ©2018 AACR.


Asunto(s)
Aciltransferasas , Factores de Transcripción NFATC , Proteínas de Fusión Oncogénica , Fosfolipasas A2 , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Humanos , Masculino , Ratones , Aciltransferasas/genética , Aciltransferasas/metabolismo , Células HEK293 , Xenoinjertos , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Fosfolipasas A2/genética , Fosfolipasas A2/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Empalme del ARN/genética , Análisis de Supervivencia
8.
Front Mol Neurosci ; 10: 248, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848385

RESUMEN

Major depressive disorder (MDD) is a highly prevalent mental illness whose therapy management remains uncertain, with more than 20% of patients who do not achieve response to antidepressants. Therefore, identification of reliable biomarkers to predict response to treatment will greatly improve MDD patient medical care. Due to the inaccessibility and lack of brain tissues from living MDD patients to study depression, researches using animal models have been useful in improving sensitivity and specificity of identifying biomarkers. In the current study, we used the unpredictable chronic mild stress (UCMS) model and correlated stress-induced depressive-like behavior (n = 8 unstressed vs. 8 stressed mice) as well as the fluoxetine-induced recovery (n = 8 stressed and fluoxetine-treated mice vs. 8 unstressed and fluoxetine-treated mice) with transcriptional signatures obtained by genome-wide microarray profiling from whole blood, dentate gyrus (DG), and the anterior cingulate cortex (ACC). Hierarchical clustering and rank-rank hypergeometric overlap (RRHO) procedures allowed us to identify gene transcripts with variations that correlate with behavioral profiles. As a translational validation, some of those transcripts were assayed by RT-qPCR with blood samples from 10 severe major depressive episode (MDE) patients and 10 healthy controls over the course of 30 weeks and four visits. Repeated-measures ANOVAs revealed candidate trait biomarkers (ARHGEF1, CMAS, IGHMBP2, PABPN1 and TBC1D10C), whereas univariate linear regression analyses uncovered candidates state biomarkers (CENPO, FUS and NUBP1), as well as prediction biomarkers predictive of antidepressant response (CENPO, NUBP1). These data suggest that such a translational approach may offer new leads for clinically valid panels of biomarkers for MDD.

9.
Cell Rep ; 17(8): 2151-2160, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851975

RESUMEN

To better understand why human neonates show a poor response to intracellular pathogens, we compared gene expression and histone modification profiles of neonatal naive CD8+ T cells with that of their adult counterparts. We found that neonatal lymphocytes have a distinct epigenomic landscape associated with a lower expression of genes involved in T cell receptor (TCR) signaling and cytotoxicity and a higher expression of genes involved in the cell cycle and innate immunity. Functional studies corroborated that neonatal CD8+ T cells are less cytotoxic, transcribe antimicrobial peptides, and produce reactive oxygen species. Altogether, our results show that neonatal CD8+ T cells have a specific genetic program biased toward the innate immune response. These findings will contribute to better diagnosis and management of the neonatal immune response.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunidad Innata/inmunología , Adulto , Citotoxicidad Inmunológica/genética , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunidad Innata/genética , Recién Nacido , Factores de Transcripción/metabolismo
10.
J Psychiatr Res ; 81: 119-26, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27438688

RESUMEN

Antidepressant efficacy is insufficient, unpredictable and poorly understood in major depressive episode (MDE). Gene expression studies allow for the identification of significantly dysregulated genes but can limit the exploration of biological pathways. In the present study, we proposed a gene coexpression analysis to investigate biological pathways associated with treatment response predisposition and their regulation by microRNAs (miRNAs) in peripheral blood samples of MDE and healthy control subjects. We used a discovery cohort that included 34 MDE patients that were given 12-week treatment with citalopram and 33 healthy controls. Two replication cohorts with similar design were also analyzed. Expression-based gene network was built to define clusters of highly correlated sets of genes, called modules. Association between each module's first principal component of the expression data and clinical improvement was tested in the three cohorts. We conducted gene ontology analysis and miRNA prediction based on the module gene list. Nine of the 59 modules from the gene coexpression network were associated with clinical improvement. The association was partially replicated in other cohorts. Gene ontology analysis demonstrated that 4 modules were associated with cytokine production, acute inflammatory response or IL-8 functions. Finally, we found 414 miRNAs that may regulate one or several modules associated with clinical improvement. By contrast, only 12 miRNAs were predicted to specifically regulate modules unrelated to clinical improvement. Our gene coexpression analysis underlines the importance of inflammation-related pathways and the involvement of a large miRNA program as biological processes predisposing associated with antidepressant response.


Asunto(s)
Antidepresivos de Segunda Generación/uso terapéutico , Citalopram/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad/genética , MicroARNs/genética , Adulto , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Humanos , Interleucina-6/genética , Masculino , Persona de Mediana Edad , Adulto Joven
11.
Environ Microbiol Rep ; 8(4): 520-6, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27264199

RESUMEN

Desulfovibrio piezophilus strain C1TLV30(T) is a mesophilic piezophilic sulfate-reducer isolated from Wood Falls at 1700 m depth in the Mediterranean Sea. In this study, we analysed the effect of the hydrostatic pressure on this deep-sea living bacterium at the physiologic and transcriptomic levels. Our results showed that lactate oxidation and energy metabolism were affected by the hydrostatic pressure. Especially, acetyl-CoA oxidation pathway and energy conservation through hydrogen and formate recycling would be more important when the hydrostatic pressure is above (26 MPa) than below (0.1 MPa) the optimal one (10 MPa). This work underlines also the role of the amino acid glutamate as a piezolyte for the Desulfovibrio genus. The transcriptomic analysis revealed 146 differentially expressed genes emphasizing energy production and conversion, amino acid transport and metabolism and cell motility and signal transduction mechanisms as hydrostatic pressure responding processes. This dataset allowed us to identify a sequence motif upstream of a subset of differentially expressed genes as putative pressure-dependent regulatory element.


Asunto(s)
Adaptación Fisiológica , Desulfovibrio/fisiología , Presión Hidrostática , Estrés Fisiológico , Acetilcoenzima A/metabolismo , Metabolismo Energético , Formiatos/metabolismo , Perfilación de la Expresión Génica , Ácido Glutámico/metabolismo , Hidrógeno/metabolismo , Lactatos/metabolismo , Mar Mediterráneo , Metabolómica , Oxidación-Reducción
12.
J Biol Chem ; 291(20): 10684-99, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27002148

RESUMEN

Glioblastomas are the most common primary brain tumors, highly vascularized, infiltrating, and resistant to current therapies. This cancer leads to a fatal outcome in less than 18 months. The aggressive behavior of glioblastomas, including resistance to current treatments and tumor recurrence, has been attributed to glioma stemlike/progenitor cells. The transcription factor EGR1 (early growth response 1), a member of a zinc finger transcription factor family, has been described as tumor suppressor in gliomas when ectopically overexpressed. Although EGR1 expression in human glioblastomas has been associated with patient survival, its precise location in tumor territories as well as its contribution to glioblastoma progression remain elusive. In the present study, we show that EGR1-expressing cells are more frequent in high grade gliomas where the nuclear expression of EGR1 is restricted to proliferating/progenitor cells. We show in primary cultures of glioma stemlike cells that EGR1 contributes to stemness marker expression and proliferation by orchestrating a PDGFA-dependent growth-stimulatory loop. In addition, we demonstrate that EGR1 acts as a positive regulator of several important genes, including SHH, GLI1, GLI2, and PDGFA, previously linked to the maintenance and proliferation of glioma stemlike cells.


Asunto(s)
Comunicación Autocrina , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/biosíntesis , Neoplasias Encefálicas/patología , Femenino , Glioblastoma/patología , Humanos , Masculino , Células Madre Neoplásicas/patología , Células Tumorales Cultivadas
13.
Schizophr Res ; 168(1-2): 434-43, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-26285829

RESUMEN

The molecular mechanisms underlying schizophrenia remain largely unknown. Although schizophrenia is a mental disorder, there is increasing evidence to indicate that inflammatory processes driven by diverse environmental factors play a significant role in its development. With gene expression studies having been conducted across a variety of sample types, e.g., blood and postmortem brain, it is possible to investigate convergent signatures that may reveal interactions between the immune and nervous systems in schizophrenia pathophysiology. We conducted two meta-analyses of schizophrenia microarray gene expression data (N=474) and non-psychiatric control (N=485) data from postmortem brain and blood. Then, we assessed whether significantly dysregulated genes in schizophrenia could be shared between blood and brain. To validate our findings, we selected a top gene candidate and analyzed its expression by RT-qPCR in a cohort of schizophrenia subjects stabilized by atypical antipsychotic monotherapy (N=29) and matched controls (N=31). Meta-analyses highlighted inflammation as the major biological process associated with schizophrenia and that the chemokine receptor CX3CR1 was significantly down-regulated in schizophrenia. This differential expression was also confirmed in our validation cohort. Given both the recent data demonstrating selective CX3CR1 expression in subsets of neuroimmune cells, as well as behavioral and neuropathological observations of CX3CR1 deficiency in mouse models, our results of reduced CX3CR1 expression adds further support for a role played by monocyte/microglia in the neurodevelopment of schizophrenia.


Asunto(s)
Encéfalo/metabolismo , Receptores de Quimiocina/metabolismo , Esquizofrenia/metabolismo , Adulto , Antipsicóticos/uso terapéutico , Biomarcadores/metabolismo , Receptor 1 de Quimiocinas CX3C , Estudios de Cohortes , Regulación hacia Abajo , Femenino , Humanos , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Esquizofrenia/tratamiento farmacológico
14.
Syst Biol Reprod Med ; 61(3): 139-49, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25821920

RESUMEN

Spermatozoa contain a complex population of RNAs including messenger RNAs (mRNAs) and small RNAs such as microRNAs (miRNA). It has been reported that these RNAs can be used to understand the mechanisms by which toxicological exposure affects spermatogenesis. The aim of our study was to compare mRNA and miRNA profiles in spermatozoa from eight smokers and eight non-smokers, and search for potential relationships between mRNA and miRNA variation. All men were selected based on their answers to a standard toxic exposure questionnaire, and sperm parameters. Using mRNA and miRNA microarrays, we showed that mRNAs from 15 genes were differentially represented between smokers and non-smokers (p<0.01): five had higher levels and 10 lower levels in the smokers. For the microRNAs, 23 were differentially represented: 16 were higher and seven lower in the smokers (0.004≤p<0.01). Quantitative RT-PCR confirmed the lower levels in smokers compared to non-smokers for hsa-miR-296-5p, hsa-miR-3940, and hsa-miR-520d-3p. Moreover, we observed an inverse relationship between the levels of microRNAs and six potential target mRNAs (B3GAT3, HNRNPL, OASL, ODZ3, CNGB1, and PKD2). Our results indicate that alterations in the level of a small number of microRNAs in response to smoking may contribute to changes in mRNA expression in smokers. We conclude that large-scale analysis of spermatozoa RNAs can be used to help understand the mechanisms by which human spermatogenesis responds to toxic substances including those in tobacco smoke.


Asunto(s)
MicroARNs/metabolismo , Nicotiana , ARN Mensajero/metabolismo , Fumar , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Humanos , Masculino , Espermatozoides/metabolismo
15.
J Immunol ; 194(7): 3432-43, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25732733

RESUMEN

V(D)J recombination assembles Ag receptor genes during lymphocyte development. Enhancers at AR loci are known to control V(D)J recombination at associated alleles, in part by increasing chromatin accessibility of the locus, to allow the recombination machinery to gain access to its chromosomal substrates. However, whether there is a specific mechanism to induce chromatin accessibility at AR loci is still unclear. In this article, we highlight a specialized epigenetic marking characterized by high and extended H3K4me3 levels throughout the Dß-Jß-Cß gene segments. We show that extended H3K4 trimethylation at the Tcrb locus depends on RNA polymerase II (Pol II)-mediated transcription. Furthermore, we found that the genomic regions encompassing the two DJCß clusters are highly enriched for Ser(5)-phosphorylated Pol II and short-RNA transcripts, two hallmarks of transcription initiation and early transcription. Of interest, these features are shared with few other tissue-specific genes. We propose that the entire DJCß regions behave as transcription "initiation" platforms, therefore linking a specialized mechanism of Pol II transcription with extended H3K4 trimethylation and highly accessible Dß and Jß gene segments.


Asunto(s)
Cromatina/genética , Sitios Genéticos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Transcripción Genética , Animales , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina , Metilación de ADN , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , ARN Polimerasa II/metabolismo , Recombinación V(D)J
17.
PLoS One ; 9(9): e106831, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25215865

RESUMEN

RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt) that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria.


Asunto(s)
Desulfovibrio/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Presión Hidrostática , Transcriptoma/genética , Adenosina Trifosfato/metabolismo , Vías Biosintéticas/genética , Metabolismo Energético/genética , Genes Bacterianos/genética , Ácido Glutámico/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ARN
18.
BMC Genomics ; 14: 914, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24365181

RESUMEN

BACKGROUND: Divergent transcription is a wide-spread phenomenon in mammals. For instance, short bidirectional transcripts are a hallmark of active promoters, while longer transcripts can be detected antisense from active genes in conditions where the RNA degradation machinery is inhibited. Moreover, many described long non-coding RNAs (lncRNAs) are transcribed antisense from coding gene promoters. However, the general significance of divergent lncRNA/mRNA gene pair transcription is still poorly understood. Here, we used strand-specific RNA-seq with high sequencing depth to thoroughly identify antisense transcripts from coding gene promoters in primary mouse tissues. RESULTS: We found that a substantial fraction of coding-gene promoters sustain divergent transcription of long non-coding RNA (lncRNA)/mRNA gene pairs. Strikingly, upstream antisense transcription is significantly associated with genes related to transcriptional regulation and development. Their promoters share several characteristics with those of transcriptional developmental genes, including very large CpG islands, high degree of conservation and epigenetic regulation in ES cells. In-depth analysis revealed a unique GC skew profile at these promoter regions, while the associated coding genes were found to have large first exons, two genomic features that might enforce bidirectional transcription. Finally, genes associated with antisense transcription harbor specific H3K79me2 epigenetic marking and RNA polymerase II enrichment profiles linked to an intensified rate of early transcriptional elongation. CONCLUSIONS: We concluded that promoters of a class of transcription regulators are characterized by a specialized transcriptional control mechanism, which is directly coupled to relaxed bidirectional transcription.


Asunto(s)
Elementos sin Sentido (Genética) , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , ARN Mensajero/genética , Transcripción Genética , Animales , Composición de Base , Cromatina/genética , Islas de CpG , Epigénesis Genética , Exones , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Timocitos
19.
Genes Dev ; 27(15): 1680-92, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23884607

RESUMEN

The conversion of male germ cell chromatin to a nucleoprotamine structure is fundamental to the life cycle, yet the underlying molecular details remain obscure. Here we show that an essential step is the genome-wide incorporation of TH2B, a histone H2B variant of hitherto unknown function. Using mouse models in which TH2B is depleted or C-terminally modified, we show that TH2B directs the final transformation of dissociating nucleosomes into protamine-packed structures. Depletion of TH2B induces compensatory mechanisms that permit histone removal by up-regulating H2B and programming nucleosome instability through targeted histone modifications, including lysine crotonylation and arginine methylation. Furthermore, after fertilization, TH2B reassembles onto the male genome during protamine-to-histone exchange. Thus, TH2B is a unique histone variant that plays a key role in the histone-to-protamine packing of the male genome and guides genome-wide chromatin transitions that both precede and follow transmission of the male genome to the egg.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Protaminas/metabolismo , Animales , Epigénesis Genética , Femenino , Fertilización/fisiología , Regulación del Desarrollo de la Expresión Génica , Genoma , Histonas/genética , Masculino , Meiosis , Ratones , Nucleosomas , Espermatogénesis/genética , Testículo/metabolismo
20.
BMC Bioinformatics ; 13: 19, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22292669

RESUMEN

BACKGROUND: Deciphering gene regulatory networks by in silico approaches is a crucial step in the study of the molecular perturbations that occur in diseases. The development of regulatory maps is a tedious process requiring the comprehensive integration of various evidences scattered over biological databases. Thus, the research community would greatly benefit from having a unified database storing known and predicted molecular interactions. Furthermore, given the intrinsic complexity of the data, the development of new tools offering integrated and meaningful visualizations of molecular interactions is necessary to help users drawing new hypotheses without being overwhelmed by the density of the subsequent graph. RESULTS: We extend the previously developed TranscriptomeBrowser database with a set of tables containing 1,594,978 human and mouse molecular interactions. The database includes: (i) predicted regulatory interactions (computed by scanning vertebrate alignments with a set of 1,213 position weight matrices), (ii) potential regulatory interactions inferred from systematic analysis of ChIP-seq experiments, (iii) regulatory interactions curated from the literature, (iv) predicted post-transcriptional regulation by micro-RNA, (v) protein kinase-substrate interactions and (vi) physical protein-protein interactions. In order to easily retrieve and efficiently analyze these interactions, we developed In-teractomeBrowser, a graph-based knowledge browser that comes as a plug-in for Transcriptome-Browser. The first objective of InteractomeBrowser is to provide a user-friendly tool to get new insight into any gene list by providing a context-specific display of putative regulatory and physical interactions. To achieve this, InteractomeBrowser relies on a "cell compartments-based layout" that makes use of a subset of the Gene Ontology to map gene products onto relevant cell compartments. This layout is particularly powerful for visual integration of heterogeneous biological information and is a productive avenue in generating new hypotheses. The second objective of InteractomeBrowser is to fill the gap between interaction databases and dynamic modeling. It is thus compatible with the network analysis software Cytoscape and with the Gene Interaction Network simulation software (GINsim). We provide examples underlying the benefits of this visualization tool for large gene set analysis related to thymocyte differentiation. CONCLUSIONS: The InteractomeBrowser plugin is a powerful tool to get quick access to a knowledge database that includes both predicted and validated molecular interactions. InteractomeBrowser is available through the TranscriptomeBrowser framework and can be found at: http://tagc.univ-mrs.fr/tbrowser/. Our database is updated on a regular basis.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Genómica/métodos , Programas Informáticos , Animales , Diferenciación Celular , Bases de Datos Genéticas , Perros , Humanos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas/genética , Proteínas/metabolismo , Ratas , Timocitos/citología , Timocitos/metabolismo , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...