Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Immunol ; 247: 109220, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36596403

RESUMEN

Disturbances in immune regulation, intestinal dysbiosis and inflammation characterize ankylosing spondylitis (AS), which is associated with RUNX3 loss-of-function variants. ZAP70W163C mutant (SKG) mice have reduced ZAP70 signaling, spondyloarthritis and ileitis. In small intestine, Foxp3+ regulatory T cells (Treg) and CD4+CD8αα+TCRαß+ intraepithelial lymphocytes (CD4-IEL) control inflammation. TGF-ß and retinoic acid (RA)-producing dendritic cells and MHC-class II+ intestinal epithelial cells (IEC) are required for Treg and CD4-IEL differentiation from CD4+ conventional or Treg precursors, with upregulation of Runx3 and suppression of ThPOK. We show in SKG mouse ileum, that ZAP70W163C or ZAP70 inhibition prevented CD4-IEL but not Treg differentiation, dysregulating Runx3 and ThPOK. TGF-ß/RA-mediated CD4-IEL development, T-cell IFN-γ production, MHC class-II+ IEC, tissue-resident memory T-cell and Runx3-regulated genes were reduced. In AS intestine, CD4-IEL were decreased, while in AS blood CD4+CD8+ T cells were reduced and Treg increased. Thus, genetically-encoded TCR signaling dysfunction links intestinal T-cell immunodeficiency in mouse and human spondyloarthropathy.


Asunto(s)
Linfocitos T CD8-positivos , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Espondiloartropatías , Animales , Humanos , Ratones , Linfocitos T CD4-Positivos , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Inflamación , Mucosa Intestinal , Intestinos , Receptores de Antígenos de Linfocitos T alfa-beta , Espondiloartropatías/genética , Factor de Crecimiento Transformador beta
2.
Immunol Cell Biol ; 101(1): 36-48, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36214093

RESUMEN

Type 1 diabetes (T1D) is caused by aberrant activation of autoreactive T cells specific for the islet beta cells. How islet-specific T cells evade tolerance to become effector T cells is unknown, but it is believed that an altered gut microbiota plays a role. Possible mechanisms include bystander activation of autoreactive T cells in the gut or "molecular mimicry" from cross-reactivity between gut microbiota-derived peptides and islet-derived epitopes. To investigate these mechanisms, we use two islet-specific CD8+ T cell clones and the non-obese diabetic mouse model of type 1 diabetes. Both insulin-specific G9C8 cells and IGRP-specific 8.3 cells underwent early activation and proliferation in the pancreatic draining lymph nodes but not in the Peyer's patches or mesenteric lymph nodes. Mutation of the endogenous epitope for G9C8 cells abolished their CD69 upregulation and proliferation, ruling out G9C8 cell activation by a gut microbiota derived peptide and molecular mimicry. However, previously activated islet-specific effector memory cells but not naïve cells migrated into the Peyer's patches where they increased their cytotoxic function. Oral delivery of butyrate, a microbiota derived anti-inflammatory metabolite, reduced IGRP-specific cytotoxic function. Thus, while initial activation of islet-specific CD8+ T cells occurred in the pancreatic lymph nodes, activated cells trafficked through the gut lymphoid tissues where they gained additional effector function via non-specific bystander activation influenced by the gut microbiota.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Ratones , Animales , Linfocitos T CD8-positivos , Diabetes Mellitus Tipo 1/genética , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Péptidos/metabolismo , Ganglios Linfáticos , Epítopos/metabolismo
3.
Cell Rep ; 39(2): 110646, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417687

RESUMEN

Emerging evidence suggests that microbiome-host crosstalk regulates intestinal immune activity and predisposition to inflammatory bowel disease (IBD). NF-κB is a master regulator of immune function and a validated target for the treatment of IBD. Here, we identify five Clostridium strains that suppress immune-mediated NF-κB activation in epithelial cell lines, PBMCs, and gut epithelial organoids from healthy human subjects and patients with IBD. Cell-free culture supernatant from Clostridium bolteae AHG0001 strain, but not the reference C. bolteae BAA-613 strain, suppresses inflammatory responses and endoplasmic reticulum stress in gut epithelial organoids derived from Winnie mice. The in vivo responses to Clostridium bolteae AHG0001 and BAA-613 mirror the in vitro activity. Thus, using our in vitro screening of bacteria capable of suppressing NF-κB in the context of IBD and using an ex vivo organoid-based approach, we identify a strain capable of alleviating colitis in a relevant pre-clinical animal model of IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Clostridiales , Colitis/metabolismo , Humanos , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Ratones , FN-kappa B/metabolismo
4.
Immunol Cell Biol ; 100(1): 33-48, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668580

RESUMEN

The autoimmune disease type 1 diabetes is predominantly mediated by CD8+ cytotoxic T-cell destruction of islet beta cells, of which islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206-214 is a dominant target antigen specificity. Previously, we found that a liposome-based antigen-specific immunotherapy encapsulating the CD4+ T-cell islet epitope 2.5mim together with the nuclear factor-κB inhibitor calcitriol induced regulatory T cells and protected from diabetes in NOD mice. Here we investigated whether the same system delivering IGRP206-214 could induce antigen-specific CD8+ T-cell-targeted immune regulation and delay diabetes. Subcutaneous administration of IGRP206-214 /calcitriol liposomes transiently activated and expanded IGRP-specific T-cell receptor transgenic 8.3 CD8+ T cells. Liposomal co-delivery of calcitriol was required to optimally suppress endogenous IGRP-specific CD8+ T-cell interferon-γ production and cytotoxicity. Concordantly, a short course of IGRP206-214 /calcitriol liposomes delayed diabetes progression and reduced insulitis. However, when IGRP206-214 /calcitriol liposomes were delivered together with 2.5mim /calcitriol liposomes, disease protection was not observed and the regulatory effect of 2.5mim /calcitriol liposomes was abrogated. Thus, tolerogenic liposomes that target either a dominant CD8+ or a CD4+ T-cell islet epitope can delay diabetes progression but combining multiple epitopes does not enhance protection.


Asunto(s)
Diabetes Mellitus Tipo 1 , Animales , Linfocitos T CD8-positivos , Epítopos de Linfocito T , Glucosa-6-Fosfatasa/metabolismo , Tolerancia Inmunológica , Liposomas/metabolismo , Ratones , Ratones Endogámicos NOD , Linfocitos T Reguladores
5.
Clin Transl Immunology ; 10(7): e1315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336205

RESUMEN

OBJECTIVE: Type 1 diabetes (T1D) is an autoimmune disorder in which autoreactive T cells destroy insulin-producing ß-cells. Interventions that preserve ß-cell function represent a fundamental therapeutic goal in T1D and biomarkers that predict and monitor ß-cell function, and changes in islet autoantigenic signatures are needed. As proinsulin and neoantigens derived from proinsulin peptides (hybrid insulin peptides, HIPs) are important T1D autoantigens, we analysed peripheral blood CD4+ T-cell autoantigen-specific proliferative responses and their relationship to estimated ß-cell function. METHODS: We recruited 72 people with and 42 without T1D, including 17 pre-diabetic islet antibody-positive and 9 antibody-negative first-degree relatives and 16 unrelated healthy controls with T1D-risk HLA types. We estimated C-peptide level at 3-month intervals for 2 years post-diagnosis and measured CD4+ T-cell proliferation to proinsulin epitopes and HIPs using an optimised bioassay. RESULTS: We show that CD4+ T-cell proliferation to any islet peptide and to multiple epitopes were significantly more frequent in pre-diabetic islet antibody-positive siblings and participants with T1D ≤ 3 months of duration, than in participants with T1D > 3 months or healthy controls. Among participants with T1D and first-degree relatives, CD4+ T-cell proliferation occurred most frequently in response to proinsulin33-63 (full-length C-peptide). Proinsulin33-63-specific responses were associated with HLA-DR3-DQ2 and/or HLA-DR4/DQ8. In children with T1D, proinsulin33-63-specific T-cell proliferation positively associated with concurrent estimated C-peptide and predicted survival in honeymoon. CONCLUSION: CD4+ T-cell proliferative responses to proinsulin-containing autoantigens are common before and immediately after diagnosis of T1D but decline thereafter. Proinsulin33-63-specific CD4+ T-cell response is a novel marker of estimated residual endogenous ß-cell function and predicts a better 2-year disease outcome.

6.
Arthritis Rheumatol ; 73(7): 1189-1199, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33452867

RESUMEN

OBJECTIVE: We undertook this study to evaluate the activation and functional relevance of inflammasome pathways in ankylosing spondylitis (AS) patients and rodent models and their relationship to dysbiosis. METHODS: An inflammasome pathway was evaluated in the gut and peripheral blood from 40 AS patients using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), flow cytometry, and confocal microscopy, and was compared to that of 20 healthy controls and 10 patients with Crohn's disease. Bacteria was visualized using silver stain in human samples, and antibiotics were administered to HLA-B27-transgenic rats. The NLRP3 inhibitor MCC950 was administered to SKG mice, and ileal and joint tissues were assessed by IHC analysis and real-time qRT-PCR. The role of inflammasome in modulating the interleukin-23 (IL-23)/IL-17 axis was studied ex vivo. RESULTS: Expression levels of Nlrp3, Nlrc4, and Aim2 were increased in the gut of HLA-B27-transgenic rats and reduced by antibiotic treatment (P < 0.05). In curdlan-treated SKG mice, NLRP3 blockade prevented ileitis and delayed arthritis onset (P < 0.05). Compared to healthy controls, AS patients demonstrated overexpression of NLRP3 (fold induction 2.33 versus 22.2; P < 0.001), NLRC4 (fold induction 1.90 versus 6.47; P < 0.001), AIM2 (fold induction 2.40 versus 20.8; P < 0.001), CASP1 (fold induction 2.53 versus 24.8; P < 0.001), IL1B (fold induction 1.07 versus 10.93; P < 0.001), and IL18 (fold induction 2.56 versus 15.67; P < 0.001) in the ileum, and caspase 1 activity was increased (P < 0.01). The score of adherent and invasive mucosa-associated bacteria was higher in AS (P < 0.01) and correlated with the expression of inflammasome components in peripheral blood mononuclear cells (P < 0.001). NLRP3 expression was associated with disease activity (the Ankylosing Spondylitis Disease Activity Score using the C-reactive protein level) (r2 = 0.28, P < 0.01) and with IL23A expression (r2 = 0.34, P < 0.001). In vitro, inflammasome activation in AS monocytes was paralleled by increased serum levels of IL-1ß and IL-18. Induction of IL23A, IL17A, and IL22 was IL-1ß-dependent. CONCLUSION: Inflammasome activation occurs in rodent models of AS and in AS patients, is associated with dysbiosis, and is involved in triggering ileitis in SKG mice. Inflammasomes drive type III cytokine production with an IL-1ß-dependent mechanism in AS patients.


Asunto(s)
Enfermedad de Crohn/inmunología , Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Íleon/inmunología , Inflamasomas/inmunología , Articulaciones/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Espondilitis Anquilosante/inmunología , Adolescente , Adulto , Animales , Antibacterianos/farmacología , Proteínas Adaptadoras de Señalización CARD/inmunología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al Calcio/inmunología , Proteínas de Unión al Calcio/metabolismo , Estudios de Casos y Controles , Caspasa 1/inmunología , Caspasa 1/metabolismo , Enfermedad de Crohn/microbiología , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Femenino , Furanos/farmacología , Antígeno HLA-B27/genética , Humanos , Ileítis/inmunología , Ileítis/metabolismo , Ileítis/patología , Íleon/efectos de los fármacos , Íleon/metabolismo , Íleon/patología , Inmunohistoquímica , Indenos/farmacología , Interleucina-17/inmunología , Interleucina-18/inmunología , Interleucina-18/metabolismo , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Interleucina-23/inmunología , Articulaciones/efectos de los fármacos , Articulaciones/metabolismo , Articulaciones/patología , Masculino , Ratones , Persona de Mediana Edad , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Ratas Transgénicas , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espondilitis Anquilosante/microbiología , Sulfonamidas/farmacología , Adulto Joven
7.
JCI Insight ; 6(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33301420

RESUMEN

Transient partial remission, a period of low insulin requirement experienced by most patients soon after diagnosis, has been associated with mechanisms of immune regulation. A better understanding of such natural mechanisms of immune regulation might identify new targets for immunotherapies that reverse type 1 diabetes (T1D). In this study, using Cox model multivariate analysis, we validated our previous findings that patients with the highest frequency of CD4+CD25+CD127hi (127-hi) cells at diagnosis experience the longest partial remission, and we showed that the 127-hi cell population is a mix of Th1- and Th2-type cells, with a significant bias toward antiinflammatory Th2-type cells. In addition, we extended these findings to show that patients with the highest frequency of 127-hi cells at diagnosis were significantly more likely to maintain ß cell function. Moreover, in patients treated with alefacept in the T1DAL clinical trial, the probability of responding favorably to the antiinflammatory drug was significantly higher in those with a higher frequency of 127-hi cells at diagnosis than those with a lower 127-hi cell frequency. These data are consistent with the hypothesis that 127-hi cells maintain an antiinflammatory environment that is permissive for partial remission, ß cell survival, and response to antiinflammatory immunotherapy.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Subgrupos de Linfocitos T/inmunología , Adolescente , Adulto , Alefacept/uso terapéutico , Linfocitos T CD4-Positivos/clasificación , Niño , Preescolar , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/terapia , Progresión de la Enfermedad , Femenino , Humanos , Inmunoterapia/métodos , Lactante , Subunidad alfa del Receptor de Interleucina-2/sangre , Subunidad alfa del Receptor de Interleucina-7/sangre , Masculino , Análisis Multivariante , Modelos de Riesgos Proporcionales , Subgrupos de Linfocitos T/clasificación , Adulto Joven
8.
Curr Diab Rep ; 20(12): 70, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33169191

RESUMEN

PURPOSE OF REVIEW: Antigen-specific immunotherapy (ASI) is a long sought-after goal for type 1 diabetes (T1D), with the potential of greater long-term safety than non-specific immunotherapy. We review the most recent advances in identification of target islet epitopes, delivery platforms and the ongoing challenges. RECENT FINDINGS: It is now recognised that human proinsulin contains a hotspot of epitopes targeted in people with T1D. Beta-cell neoantigens are also under investigation as ASI target epitopes. Consideration of the predicted HLA-specificity of the target antigen for subject selection is now being incorporated into trial design. Cell-free ASI approaches delivering antigen with or without additional immunomodulatory agents can induce antigen-specific regulatory T cell responses, including in patients and many novel nanoparticle-based platforms are under development. ASI for T1D is rapidly advancing with a number of modalities currently being trialled in patients and many more under development in preclinical models.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Antígenos , Diabetes Mellitus Tipo 1/terapia , Humanos , Tolerancia Inmunológica , Inmunoterapia
9.
J Immunol ; 204(7): 1787-1797, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32111734

RESUMEN

Ag-specific tolerizing immunotherapy is considered the optimal strategy to control type 1 diabetes, a childhood disease involving autoimmunity toward multiple islet antigenic peptides. To understand whether tolerizing immunotherapy with a single peptide could control diabetes driven by multiple Ags, we coencapsulated the high-affinity CD4+ mimotope (BDC2.5mim) of islet autoantigen chromogranin A (ChgA) with or without calcitriol (1α,25-dihydroxyvitamin D3) into liposomes. After liposome administration, we followed the endogenous ChgA-specific immune response with specific tetramers. Liposome administration s.c., but not i.v., induced ChgA-specific Foxp3+ and Foxp3- PD1+ CD73+ ICOS+ IL-10+ peripheral regulatory T cells in prediabetic mice, and liposome administration at the onset of hyperglycemia significantly delayed diabetes progression. After BDC2.5mim/calcitriol liposome administration, adoptive transfer of CD4+ T cells suppressed the development of diabetes in NOD severe combined immunodeficiency mice receiving diabetogenic splenocytes. After BDC2.5mim/calcitriol liposome treatment and expansion of ChgA-specific peripheral regulatory T cells. IFN-γ production and expansion of islet-specific glucose-6-phosphatase catalytic subunit-related protein-specific CD8+ T cells were also suppressed in pancreatic draining lymph node, demonstrating bystander tolerance at the site of Ag presentation. Thus, liposomes encapsulating the single CD4+ peptide, BDC2.5mim, and calcitriol induce ChgA-specific CD4+ T cells that regulate CD4+ and CD8+ self-antigen specificities and autoimmune diabetes in NOD mice.


Asunto(s)
Autoantígenos/inmunología , Enfermedades Autoinmunes/inmunología , Autoinmunidad/inmunología , Diabetes Mellitus Tipo 1/inmunología , Islotes Pancreáticos/inmunología , Liposomas/inmunología , Linfocitos T Reguladores/inmunología , Animales , Enfermedades Autoinmunes/terapia , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Diabetes Mellitus Tipo 1/terapia , Femenino , Tolerancia Inmunológica/inmunología , Inmunoterapia/métodos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Péptidos/inmunología
10.
Best Pract Res Clin Rheumatol ; 33(6): 101497, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-32199713

RESUMEN

Rheumatoid Arthritis (RA) is a severe, chronic autoimmune disease that affects 1% of the world's population. Familial risk contributes 50% of the risk of seropositive RA, with strongest risks seen in first-degree relatives. Smoking increases the risk of developing anti-citrullinated peptide antibody (ACPA)+ RA, particularly in individuals with high-risk RA-susceptibility alleles. Other contributory environmental risks including particulate exposure, periodontal disease, bronchiectasis, diet, obesity and the oral contraceptive impact respiratory, oral, intestinal and genital tract mucosal sites. Furthermore, the first signs of autoimmunity may appear at mucosal sites e.g. sputum ACPA-IgA and IgG. While oral and faecal dysbiosis are well described, there is no consistent single bacterial species that appears to drive RA. Animal and human data suggest a model in which multiple environmental influences impact mucosal immune function through the host genetics through enhanced mucosal permeability and the traffic of pro-inflammatory PAMPs and the amplification of autoimmune responses. In some cases, autoimmunity may be driven by cross-reactivity, or mimicry, to pathogen-specific antigens, particularly where the host immune system fails to support their rapid control and elimination.


Asunto(s)
Artritis Reumatoide , Microbiota , Animales , Artritis Reumatoide/microbiología , Autoanticuerpos , Autoinmunidad , Disbiosis , Humanos , Fumar
11.
Oncotarget ; 9(5): 6015-6027, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29464051

RESUMEN

Cervical cancer is a malignant transformation of keratinocytes initiated by the E7 oncoprotein of human papillomavirus (HPV). These tumors are characterized by keratinocyte hyperproliferation and are often infiltrated with activated CD8 T cells. HPV infection confers changes to gain immunological advantage to promote chronic infection, and these persist with malignant transformation. We investigated the relative importance of the many redundant mechanisms of cytotoxicity used by CD8 T cells to kill keratinocytes expressing HPV E7 oncoprotein using extended-duration time-lapse microscopy that allows examination of cell-to-cell interactions during killing. E7 expression by keratinocytes increased susceptibility to cell-mediated killing. However, while killing of non-transgenic keratinocytes was traditional, perforin-mediated, and caspase-dependent, E7-expression favored killing by perforin-independent, caspase-independent mechanisms. The roles of perforin, TNFα, IFNγ, Fas/FasL and PD1/PD-L1 were graded according to target cell survival to produce a hierarchy of killing mechanisms utilized in killing E7-expressing cells. TNFα was essential for perforin-mediated killing of E7-expressing cells, but not perforin-independent killing. IFNγ facilitated killing by Fas/FasL interaction, especially in the absence of perforin. Additionally, expression of E7 offered protection from killing by up regulation of PD-L1, Fas and FasL expression on keratinocytes promoting fight-back by target cells, resulting in effector cell death. This study shows that keratinocytes expressing E7 are highly susceptible to killing by CD8 T cells, but utilizing different armamentarium. Down-regulation of CD8 T cell cytotoxicity in HPV-related tumors may be due to suppression by E7-expressing keratinocytes. Immunotherapy for HPV-related cancers may be improved by suppression of PD-L1, or by suppression of FasL.

12.
J Autoimmun ; 72: 118-25, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27255733

RESUMEN

Reestablishment of immune tolerance to the insulin-producing beta cells is the desired goal for type 1 diabetes (T1D) treatment and prevention. Immune tolerance to multiple islet antigens is defective in individuals with T1D, but the mechanisms involved are multifaceted and may involve loss of thymic and peripheral tolerance. In this review we discuss our current understanding of the varied mechanisms by which peripheral tolerance to islet antigens is maintained in healthy individuals where genetic protection from T1D is present and how this fails in those with genetic susceptibility to disease. Novel findings in regards to expression of neo-islet antigens, non-classical regulatory cell subsets and the impact of specific genetic variants on tolerance induction are discussed.


Asunto(s)
Autoantígenos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Células Secretoras de Insulina/inmunología , Tolerancia Periférica/inmunología , Animales , Tolerancia Central/inmunología , Humanos , Modelos Inmunológicos , Linfocitos T Reguladores/inmunología , Timo/inmunología
13.
Immunol Cell Biol ; 93(9): 771-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26303210

RESUMEN

Interferon regulatory factor (IRF) family members impart cell-type specificity to toll-like receptor (TLR) signalling, and we recently identified a role for IRF6 in TLR2 signalling in epithelial cells. TLR3 has a well-characterized role in wound healing in the skin, and here, we examined TLR3-dependent IRF6 functions in human keratinocytes. Primary keratinocytes responded robustly to the TLR3 agonist poly(IC) with upregulation of mRNAs for interferon-ß (IFN-ß), the interleukin-12 (IL-12) family member IL-23p19 and the chemokines IL-8 and chemokine (C-C motif) ligand 5 (CCL5). Silencing of IRF6 expression enhanced poly(IC)-inducible IFN-ß mRNA levels and inhibited poly(IC)-inducible IL-23p19 mRNA expression in primary keratinocytes. Consistent with these data, co-transfection of IRF6 increased poly(IC)-inducible IL-23p19 promoter activity, but inhibited poly(IC)-inducible IFN-ß promoter activity in reporter assays. Surprisingly, poly(IC) did not regulate IL-12p40 expression in keratinocytes, suggesting that TLR3-inducible IL-23p19 may have an IL-23-independent function in these cells. The only other IL-12 family member that was strongly poly(IC) inducible was EBI3, which has not been shown to heterodimerize with IL-23p19. Both co-immunoprecipitation and proximity ligation assays revealed that IL-23p19 and EBI3 interact in cells. Co-expression of IL-23p19 and EBI3, as compared with IL-23p19 alone, resulted in increased levels of secreted IL-23p19, implying a functional role for this heterodimer. In summary, we report that IRF6 regulates a subset of TLR3 responses in human keratinocytes, including the production of a novel IL-12 family heterodimer (p19/EBI3). We propose that the TLR3-IRF6-p19/EBI3 axis may regulate keratinocyte and/or immune cell functions in the context of cell damage and wound healing in the skin.


Asunto(s)
Factores Reguladores del Interferón/metabolismo , Subunidad p19 de la Interleucina-23/metabolismo , Interleucinas/metabolismo , Queratinocitos/metabolismo , Receptor Toll-Like 3/metabolismo , Animales , Células CACO-2 , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Expresión Génica/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Factores Reguladores del Interferón/genética , Subunidad p19 de la Interleucina-23/química , Subunidad p19 de la Interleucina-23/genética , Interleucinas/química , Interleucinas/genética , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Células MCF-7 , Microscopía Confocal , Antígenos de Histocompatibilidad Menor , Poli I-C/farmacología , Unión Proteica , Multimerización de Proteína , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptor Toll-Like 3/agonistas
14.
Eur J Immunol ; 45(5): 1524-34, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25726757

RESUMEN

Analyses of the regulatory T (Treg) cell TCR repertoire should help elucidate the nature and diversity of their cognate antigens and thus how Treg cells protect us from autoimmune diseases. We earlier identified CD44(hi) CD62L(low) activated/memory (am) Treg cells as a Treg-cell subset with a high turnover and possible self-specificity. We now report that amTreg cells are predominantly distributed in lymph nodes (LNs) draining deep tissues. Multivariate analyses of CDR3 spectratyping first revealed that amTreg TCR repertoire is different from that of naïve Treg cells (nTreg cells) and effector T (Teff) cells. Furthermore, in deep- versus superficial LNs, TCR-ß deep sequencing further revealed diversified nTreg-cell and amTreg-cell repertoires, although twofold less diverse than that of Teff cells, and with repertoire richness significantly lower in deep-LN versus superficial-LN Treg cells. Importantly, expanded clonotypes were mostly detected in deep-LN amTreg cells, some accounting for 20% of the repertoire. Strikingly, these clonotypes were absent from nTreg cells, but found at low frequency in Teff cells. Our results, obtained in nonmanipulated mice, indicate different antigenic targets for naïve and amTreg cells and that amTreg cells are self-specific. The data we present are consistent with an instructive component in Treg-cell differentiation.


Asunto(s)
Genes Codificadores de la Cadena beta de los Receptores de Linfocito T , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Linfocitos T Reguladores/clasificación , Linfocitos T Reguladores/inmunología , Animales , Diferenciación Celular/inmunología , Regiones Determinantes de Complementariedad/genética , Femenino , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Memoria Inmunológica , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ADN , Distribución Tisular
15.
Rev Med Virol ; 25 Suppl 1: 54-71, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25752816

RESUMEN

It has been more than 7 years since the commercial introduction of highly successful vaccines protecting against high-risk human papillomavirus (HPV) subtypes and the development of cervical cancer. From an immune standpoint, the dependence of cervical cancer on viral infection has meant that HPV proteins can be targeted as strong tumour antigens leading to clearance of the infection and the subsequent protection from cancer. Commercially available vaccines consisting of the L1 capsid protein assembled as virus-like particles (VLPs) induce neutralising antibodies that deny access of the virus to cervical epithelial cells. While greater than 90% efficacy has been demonstrated at the completion of large phase III trials in young women, vaccine developers are now addressing broader issues such as efficacy in boys, longevity of the protection and inducing cross-reactive antibody for oncogenic, non-vaccine HPV strains. For women with existing HPV infection, the prophylactic vaccines provide little protection, and consequently, the need for therapeutic vaccines will continue into the future. Therapeutic vaccines targeting HPVE6 and E7 proteins are actively being pursued with new adjuvants and delivery vectors, combined with an improved knowledge of the tumour microenvironment, showing great promise. This review will focus on recent progress in prophylactic and therapeutic vaccine development and implementation since the publication of end of study data from phase III clinical trials between 2010 and 2012.


Asunto(s)
Papillomaviridae/fisiología , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/inmunología , Neoplasias del Cuello Uterino/prevención & control , Animales , Femenino , Humanos , Masculino , Papillomaviridae/inmunología , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Vacunas contra Papillomavirus/administración & dosificación , Vacunas contra Papillomavirus/genética , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/virología , Vacunación
16.
Immunol Cell Biol ; 93(6): 540-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25601274

RESUMEN

Atopic dermatitis is a common pruritic and inflammatory skin disorder with unknown etiology. Most commonly occurring during early childhood, atopic dermatitis is associated with eczematous lesions and lichenification, in which the epidermis becomes hypertrophied resulting in thickening of the skin. In this study, we report an atopic dermatitis-like pathophysiology results in a murine model following the expression of the high-risk human papillomavirus (HPV) 16 oncoprotein E7 in keratinocytes under the keratin 14 promoter. We show that HPV16 E7 expression in the skin is associated with skin thickening, acanthosis and light spongiosis. Locally, HPV16 E7-expressing skin secreted high levels of thymic stromal lymphopoietin (TSLP) and contained increased numbers of innate lymphoid cells (ILCs). High levels of circulating immunoglobulin E were associated with increased susceptibility to skin allergy in a model of cutaneous challenge, and to airway bronchiolar inflammation, enhanced airway goblet cell metaplasia and mucus production in a model of atopic march. Surprisingly, skin pathology occurred independently of T cells and mast cells. Thus, our findings suggest that the expression of a single HPV oncogene in the skin can drive the onset of atopic dermatitis-like pathology through the induction of TSLP and type 2 ILC infiltration.


Asunto(s)
Citocinas/biosíntesis , Dermatitis Atópica/inmunología , Dermatitis Atópica/metabolismo , Expresión Génica , Proteínas E7 de Papillomavirus/genética , Piel/inmunología , Piel/metabolismo , Subgrupos de Linfocitos T/inmunología , Animales , Dermatitis Atópica/patología , Dermatitis Atópica/virología , Modelos Animales de Enfermedad , Inmunidad Innata , Interleucina-33/metabolismo , Interleucinas/metabolismo , Mastocitos/inmunología , Mastocitos/patología , Ratones , Ratones Transgénicos , Fenotipo , Piel/patología , Piel/virología , Subgrupos de Linfocitos T/patología , Linfopoyetina del Estroma Tímico
17.
PLoS Pathog ; 10(10): e1004466, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25340820

RESUMEN

Human Papillomavirus (HPV) 16 E7 protein promotes the transformation of HPV infected epithelium to malignancy. Here, we use a murine model in which the E7 protein of HPV16 is expressed as a transgene in epithelium to show that mast cells are recruited to the basal layer of E7-expressing epithelium, and that this recruitment is dependent on the epithelial hyperproliferation induced by E7 by inactivating Rb dependent cell cycle regulation. E7 induced epithelial hyperplasia is associated with increased epidermal secretion of CCL2 and CCL5 chemokines, which attract mast cells to the skin. Mast cells in E7 transgenic skin, in contrast to those in non-transgenic skin, exhibit degranulation. Notably, we found that resident mast cells in E7 transgenic skin cause local immune suppression as evidenced by tolerance of E7 transgenic skin grafts when mast cells are present compared to the rejection of mast cell-deficient E7 grafts in otherwise competent hosts. Thus, our findings suggest that mast cells, recruited towards CCL2 and CCL5 expressed by epithelium induced to proliferate by E7, may contribute to an immunosuppressive environment that enables the persistence of HPV E7 protein induced pre-cancerous lesions.


Asunto(s)
Quimiocina CCL2/inmunología , Quimiocina CCL5/inmunología , Epitelio/virología , Mastocitos/virología , Proteínas E7 de Papillomavirus/metabolismo , Animales , Animales Modificados Genéticamente , Ambiente , Humanos , Ratones Endogámicos C57BL , Piel/virología
18.
J Immunol ; 191(5): 2273-81, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23913969

RESUMEN

Regulatory T cells (Tregs) play crucial roles in both fetal and tumor development. We recently showed that immunosurveillance by pre-existing CD44(high)CD62L(low) activated/memory Tregs (amTregs) specific for self-Ags protects emergent tumor cells in mice. This Treg response of a memory type is more rapid than and dominates the antitumor response of tumor-specific effector T cells. In this study, we report striking similarities between the early Treg responses to embryo and tumor implantation. Tregs are rapidly recruited to uterus-draining lymph nodes and activated in the first days after embryo implantation in both syngeneic and allogeneic matings; express the markers of the amTreg subset; and are at least in part self-Ag specific, as seen in tumor emergence. Unlike in the tumor emergence setting, however, for which preimmunization against tumor Ags is sufficient for complete tumor eradication even in the presence of Tregs, Treg depletion is additionally required for high frequencies of fetus loss after preimmunization against paternal tissue Ags. Thus, amTregs play a major role in protecting embryos in both naive and preimmune settings. This role and the ensuing therapeutic potential are further highlighted by showing that Treg stimulation, directly by low-dose IL-2 or indirectly by Fms-related tyrosine kinase 3 ligand, led to normal pregnancy rates in a spontaneous abortion-prone model.


Asunto(s)
Implantación del Embrión/inmunología , Embrión de Mamíferos/inmunología , Tolerancia Inmunológica/inmunología , Memoria Inmunológica/inmunología , Linfocitos T Reguladores/inmunología , Traslado Adoptivo , Animales , Femenino , Citometría de Flujo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias Experimentales/inmunología , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
J Invest Dermatol ; 133(12): 2686-2694, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23652797

RESUMEN

Chronic infection of anogenital epithelium with human papillomavirus (HPV) promotes development of cancer. Many pathogens evoke immunosuppressive mechanisms to enable persistent infection. We have previously shown that grafted skin expressing HPV16 E7 oncoprotein from a keratin-14 promoter (K14E7) is not rejected by a syngeneic, immunocompetent host. In this study we show that indoleamine 2,3-dioxygenase (IDO) 1, an IFN-γ-inducible immunoregulatory molecule, is more highly expressed by langerin(-ve) dermal dendritic cells (DCs) from K14E7 skin than nontransgenic control skin. Furthermore, inhibiting IDO activity using 1-methyl-dl-tryptophan (1-D/L-MT) promotes K14E7 skin graft rejection. Increased IDO1 expression and activity in K14E7 skin requires IFN-γ and invariant natural killer T (iNKT) cells, both of which have been shown to negatively regulate T-cell effector function and suppress K14E7 graft rejection. Furthermore, DCs from K14E7 skin express higher levels of IFN-γ receptor (IFN-γR) than DCs from control skin. K14E7 transgenic skin recruits significantly higher numbers of DCs, independent of IFN-γ and IFN-γR expression. Consistent with these observations in a murine model, we found higher expression of IDO1 and IFN-γ but not IDO2 in the cervical epithelium of patients with HPV-associated cervical intraepithelial neoplasia (CIN) 2/3. Our data support a hypothesis that induction of IDO1 in HPV-infected skin contributes to evasion of host immunity.


Asunto(s)
Células Dendríticas/enzimología , Células Dendríticas/virología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Animales , Antígenos de Superficie/metabolismo , Antígeno CD11c/metabolismo , Células Dendríticas/inmunología , Femenino , Rechazo de Injerto , Humanos , Inmunosupresores/uso terapéutico , Interferón gamma/metabolismo , Queratina-17/genética , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células T Asesinas Naturales/inmunología , Regiones Promotoras Genéticas , Receptores de Interferón/metabolismo , Piel/citología , Trasplante de Piel , Triptófano/análogos & derivados , Triptófano/farmacología , Neoplasias del Cuello Uterino/metabolismo , Displasia del Cuello del Útero/metabolismo , Receptor de Interferón gamma
20.
J Gene Med ; 14(2): 90-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22228582

RESUMEN

BACKGROUND: Gene transfer in the thymus, based on HIV-derived lentiviral vectors, is a promising avenue for modulation of T cell selection and autoimmunity. However, the impact of intrathymic (IT) injections on an antigen-specific immune response elicited in the periphery of normal mice has not been investigated yet. METHODS: Highly concentrated stocks of lentiviral vectors expressing the soluble form of hemaglutinin of the influenza virus (LvHA) were injected in the thymus of normal BALB/c mice. The CD4 and CD8-mediated immune responses to HA after peripheral immunization were measured by various parameters. RESULTS: We first show that a lentiviral vector expressing the luciferase was detected for at least 2 months after IT-injections. We then show that the LvHA vector could elicit a functional CD4- and CD8-T cell-mediated immune responses in the peripheral lymphoid organs of BALB/c mice. IT-injection of the LvHA vector significantly curbed this response: lower numbers of transferred HA-specific CD4(+) T cells were found in LvHA-injected compared to control animals. Furthermore, lower frequencies of HA-specific CD8(+) T cells, interferon γ-producing cells and cytotoxic cells were detected from 3 weeks to 3 months in LvHA-injected mice compared to controls. However, these reduced CD8-mediated responses were not increased after depletion of CD25(+) cells in vitro or in vivo. CONCLUSIONS: The results obtained in the present study show that injection of the LvHA lentiviral vector significantly curtailed the immune response to the same antigen in the periphery. Increased selection of HA-specific regulatory T cells and negative selection of HA-specific CD8(+) T cell precursors may explain the results. Our work establish the feasibility of IT-injections of lentiviral vectors to manipulate T cell tolerance in the thymus of normal mice, for basic and pre-clinical research.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Celular/inmunología , Timo/metabolismo , Animales , Ensayo de Immunospot Ligado a Enzimas , Citometría de Flujo , Fluoresceínas , Vectores Genéticos/administración & dosificación , Inyecciones , Lentivirus , Mediciones Luminiscentes , Ratones , Ratones Endogámicos BALB C , Succinimidas , Timo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...