Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 436(22): 168768, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216515

RESUMEN

Neurofibromin (Nf1) is a giant multidomain protein encoded by the tumour-suppressor gene NF1. NF1 is mutated in a common genetic disease, neurofibromatosis type I (NF1), and in various cancers. The protein has a Ras-GAP (GTPase activating protein) activity but is also connected to diverse signalling pathways through its SecPH domain, which interacts with lipids and different protein partners. We previously showed that Nf1 partially colocalized with the ProMyelocytic Leukemia (PML) protein in PML nuclear bodies, hotspots of SUMOylation, thereby suggesting the potential SUMOylation of Nf1. Here, we demonstrate that the full-length isoform 2 and a SecPH fragment of Nf1 are substrates of the SUMO pathway and identify a well-defined SUMOylation profile of SecPH with two main modified lysines. One of these sites, K1731, is highly conserved and surface-exposed. Despite the presence of an inverted SUMO consensus motif surrounding K1731, and a potential SUMO-interacting motif (SIM) within SecPH, we show that neither of these elements is necessary for K1731 SUMOylation, which is also independent of Ubc9 SUMOylation on K14. A 3D model of an interaction between SecPH and Ubc9 centred on K1731, combined with site-directed mutagenesis, identifies specific structural elements of SecPH required for K1731 SUMOylation, some of which are affected in reported NF1 pathogenic variants. This work provides a new example of SUMOylation dependent on the tertiary rather than primary protein structure surrounding the modified site, expanding our knowledge of mechanisms governing SUMOylation site selection.

2.
Cells ; 9(11)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121128

RESUMEN

Neurofibromin is a large and multifunctional protein encoded by the tumor suppressor gene NF1, mutations of which cause the tumor predisposition syndrome neurofibromatosis type 1 (NF1). Over the last three decades, studies of neurofibromin structure, interacting partners, and functions have shown that it is involved in several cell signaling pathways, including the Ras/MAPK, Akt/mTOR, ROCK/LIMK/cofilin, and cAMP/PKA pathways, and regulates many fundamental cellular processes, such as proliferation and migration, cytoskeletal dynamics, neurite outgrowth, dendritic-spine density, and dopamine levels. The crystallographic structure has been resolved for two of its functional domains, GRD (GAP-related (GTPase-activating protein) domain) and SecPH, and its post-translational modifications studied, showing it to be localized to several cell compartments. These findings have been of particular interest in the identification of many therapeutic targets and in the proposal of various therapeutic strategies to treat the symptoms of NF1. In this review, we provide an overview of the literature on neurofibromin structure, function, interactions, and regulation and highlight the relationships between them.


Asunto(s)
Regulación de la Expresión Génica , Neurofibromina 1/química , Neurofibromina 1/genética , Animales , Humanos , Neurofibromina 1/metabolismo , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA