Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 12(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37998007

RESUMEN

To ensure optimal feed intake, growth, and general fish health in aquaculture sea cages, interactions between drivers that affect oxygen conditions need to be understood. The main drivers are oxygen consumption and water exchange, caused by flow through the cage. Swimming energetics in rainbow trout (Oncorhynchus mykiss) in normoxia and hypoxia at 10, 15, and 20 °C were determined. Using the determinations, a conceptual model of oxygen conditions within sea cages was created. By applying the model to a case study, results show that with a temperature increase of 10 °C, oxygen concentration will decrease three times faster. To maintain optimal oxygen concentration within the cage, the flow velocity must be increased by a factor of 3.7. The model is highly relevant for current farms since the model predictions can explain why and when suboptimal conditions occur within the cages. Using the same method, the model can be used to estimate the suitability of potential new aquaculture sites.

3.
Conserv Physiol ; 9(1): coab028, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026213

RESUMEN

Animals' selection of environments within a preferred range is key to understanding their habitat selection, tolerance to stressors and responses to environmental change. For aquatic animals, preferred environmental ranges can be studied in so-called shuttle-boxes, where an animal can choose its ambient environment by shuttling between separate choice chambers with differences in an environmental variable. Over time, researchers have refined the shuttle-box technology and applied them in many different research contexts, and we here review the use of shuttle-boxes as a research tool with aquatic animals over the past 50 years. Most studies on the methodology have been published in the latest decade, probably due to an increasing research interest in the effects of environmental change, which underlines the current popularity of the system. The shuttle-box has been applied to a wide range of research topics with regards to preferred ranges of temperature, CO 2 , salinity and O 2  in a vast diversity of species, showing broad applicability for the system. We have synthesized the current state-of-the-art of the methodology and provided best practice guidelines with regards to setup, data analyses, experimental design and study reporting. We have also identified a series of knowledge gaps, which can and should be addressed in future studies. We conclude with highlighting directions for research using shuttle-boxes within evolutionary biology and behavioural and physiological ecology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA